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Chapter 1

Rings and Fields

1.1 Definition of a Ring

Up until now, we have focused our attention primarily on sets with a single binary operation. That

is, we have been studying groups. However, we have also considered sets with two binary operations,

namely fields. The next topic of study, rings, deals with sets with two binary operations, but we will

weaken the field axioms slightly with respect to the “multiplication”. Here is the main definition.

Definition 1.1.1 (Ring) A set R together with two binary operations + and · is a ring if

R1. (R,+) is an abelian group. (We write 0 for the identity.)

R2. The operation · is associative.

R3l. We have a(b+ c) = ab+ ac for all a, b, c ∈ R.

R3r. We have (a+ b)c = ac+ bc for all a, b, c ∈ R.

Before we give examples, we invite the reader to think about the properties of a field that have been

omitted from the previous definition. For example, if R is a ring, the non-zero elements R× do not

necessarily form a group under ·.

Example 1.1.2 Every field is a ring. As we have noted, the converse is false. In particular, the

familiar fields Q, R, and C are all rings with the usual addition and multiplication.
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Example 1.1.3 The integers Z form a ring under usual addition and multiplication. This ring is

not a field however, since n ∈ Z has no multiplicative inverse if n 6= ±1.

Example 1.1.4 If R is a ring, the set

Mn(R) = {A = [aij ] : aij ∈ R, 1 ≤ i, j ≤ n}

of n × n matrices with entries in R is a ring with the usual addition and multiplication of n × n

matrices over R. This ring is also not a field.

Example 1.1.5 If X is a set, then the set of all functions f : X → R (or C or any ring R!) is a

ring under pointwise addition and multiplication of functions. That is, for f, g : X → R, we define

f + g and fg by

(f + g)(x) = f(x) + g(x)

and

(fg)(x) = f(x)g(x).

We will denote this ring by F (X,R).

We leave it as an exercise for the reader to verify that each of the above examples is indeed a ring.

Example 1.1.6 We define a multiplication in the group Zn by a · b = ab. We will see that this

multiplication is well defined and hence Zn is a ring, called the ring of integers modulo n. We

will also see that Zn is a field if and only if n is a prime.

We now want to see what elementary properties of rings that we can deduce only from the definition.

For notation, recall that 0 will denote the additive identity of R, and if a ∈ R, −a denotes the additive

inverse for a.

Proposition 1.1.7 If R is a ring, then for all a, b ∈ R, we have

1. 0a = a0 = 0.

2. a(−b) = (−a)b = −(ab).

3. (−a)(−b) = ab.
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Proof. Let a, b ∈ R be arbitrary.

(1) Using the left distributive law, we have a0 = a(0 + 0) = a0 + a0, and therefore 0 = a0 by the

cancellation law in the group (R,+). Similarly we have 0 = 0a.

(2) Recalling that the additive inverse for an element in R is unique, we note that

ab+ a(−b) = a(b+ (−b)) = a0 = 0

so that a(−b) = −(ab). Similarly we have (−a)b = −(ab).

(3) Now, using (2), we have (−a)(−b) = −(a(−b)) = −(−(ab)). Now −(−(ab)) is the element that

when added to −(ab) gives 0. Clearly ab satisfies this property so that (−a)(−b) = ab as desired.

After our extensive work with groups and vector spaces, the following definition should feel very

natural to the reader (does it?).

Definition 1.1.8 (Ring homomorphism) If R and S are rings, a map ϕ : R → S is called a

ring homomorphism if for all a, b ∈ R, we have both

1. ϕ(a+ b) = ϕ(a) + ϕ(b),

2. ϕ(ab) = ϕ(a)ϕ(b).

This definition says that a ring homomorphism is a homomorphism of abelian groups R and S

that also preserves the multiplication. In particular, we can speak of the kernel and image of ϕ

as a group homomorphism. Recall that the homomorphism ϕ : R → S (as groups) gives rise to a

quotient group. We will see soon that we also have a “quotient ring” in this situation as well.

Example 1.1.9 Let F (R,R) be the ring of all functions f : R→ R as defined above. If a ∈ R, then

a determines a ring homomorphism ϕa : F (R)→ R via the formula

ϕa(f) = f(a).

We can verify that ϕa is a homomorphism immediately. If f, g ∈ F (R), then by definition we have

ϕa(f + g) = (f + g)(a) = f(a) + g(a) = ϕa(f) + ϕa(g)

and

ϕa(fg) = (fg)(a) = f(a)g(a) = ϕa(f)ϕa(g).

This homomorphism is called the evaluation (at a) homomorphism. It will be very important

when we study polynomial rings in detail. Indeed, solving a polynomial equation p(x) = 0 amounts

to finding a ∈ R such that p ∈ kerϕa.
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Again, to the experienced MAT 150AB student, the following definition comes as no surprise.

Definition 1.1.10 (Ring isomorphism) A ring homomorphism ϕ : R → S is an isomorphism

if ϕ is bijective as a function. If there exists an isomorphism ϕ : R → S, we say that R and S are

isomorphic.

Example 1.1.11 We note easily that the set 2Z of even integers form a ring under the usual addition

and multiplication of integers. Moreover, the map ϕ : Z → 2Z defined by ϕ(n) = 2n is easily seen

to be a isomorphism of the abelian groups Z and 2Z. However, if n,m ∈ Z, then

ϕ(nm) = 2nm 6= (2n)(2m) = ϕ(n)ϕ(m)

so that ϕ is not an isomorphism of rings. In fact, the rings Z and 2Z are not isomorphic. (Did we

prove this last statement here?)

In many of the examples we have considered so far (all but one of them, in fact), our rings have had

a multiplicative identity as well as an additive identity. That is, we have seen an element 1 ∈ R with

1a = a1 = a for all a ∈ R. We note that the singleton set {0} is a ring with 0 + 0 = 0 and 0 · 0 = 0,

and in this case, 0 is both and additive and multiplicative identity. This is the only case where

this can happen though. Indeed, if 0 is a multiplicative identity, then by our proposition above,

a = 0a = 0 for all a ∈ R. We call this singleton ring the trivial ring. We always exclude this

example when we speak of rings with a multiplicative identity. That is, if 1 ∈ R is a multiplicative

identity, then 1 6= 0.

Definition 1.1.12 (Commutative ring, unity) If R is a ring such that ab = ba for all a, b ∈ R,

then we say R is a commutative ring. If R has a multiplicative identity 1 ∈ R, then we say R is

a ring with unity. The multiplicative identity is called unity. A ring with unity is also called a

unital ring.

Proposition 1.1.13 If R is a ring with unity 1 ∈ R, then 1 is the only unity.

Proof. This follows from the general result that an identity for an associative binary operation is

always unique.

If R1, R2, . . . , Rn are all rings, then we can multiply elements of the product R1 × · · · ×Rn compo-

nentwise making the set R = R1×· · ·×Rn into a ring called the product ring. Clearly the product

R is commutative iff. each factor is commutative and if each Ri has unity 1i, then (11, . . . , 1n) ∈ R
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is unity for R. We leave the precise proofs of these statements as exercises for the reader. Here is

one more definition.

Definition 1.1.14 (Unit, field,skew-field) Let R be a ring with unity. An element u ∈ R is a

unit if uv = vu = 1 for some v ∈ R. If every non-zero element of a ring R is a unit, then R is

called a division ring. A field is a commutative division ring. A non-commutative division ring

is sometimes called a skew-field.

We end the lecture with the notion of a subring. Again, the reader should be able to supply her

or his own definition. In particular, a subset S of a ring R is a subring if S is itself a ring under the

same operations. Similarly you can define subfield and sub-anything for that matter!

1.2 Integral Domains

One of the many useful algebraic facts about the ring of complex numbers C and its subrings R,Q

and Z is the so called zero product rule. It states that the only way a product of two elements

in the ring is equal to zero is for one of the elements to be zero. We formalize this in the following

definition.

Definition 1.2.1 (Divisor of zero) If R is a ring and 0 6= a ∈ R, then a is a (left) divisor of

zero if there exists an element b 6= 0 such that ab = 0. In this case, the element b is a (right)

divisor of zero.

If R is a commutative ring, then every left divisor of zero is also a right divisor of zero and vice

versa. In this case we simply say divisor of zero. Our remarks above state that C has no divisors

of zero.

Proposition 1.2.2 In the ring Zn, the divisors of zero are precisely those elements m ∈ Zn such

that (m,n) > 1.

Proof. Let d = (m,n) and note that

m · n
d

=
m

d
· n ≡ 0 (mod n).

If d > 1, then 0 6≡ n/d (mod n) so that m is a zero divisor. Conversely, if d = 1 and ma ≡ 0

(mod p), then n|ma so that necessarily n|a. This implies a ≡ 0 (mod p) so that m is not a zero

divisor.
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Corollary 1.2.3 If p is a prime, the ring Zp has no divisors of zero.

Definition 1.2.4 (Cancellation law for rings) A ring R has the left cancellation law if for

all a 6= 0 and all b, c ∈ R, ab = ac implies b = c. Similarly, R has the right cancellation law if

for all a 6= 0 and all b, c ∈ R, ba = ca implies b = c. If R has both the left and right cancellation

laws, we say the cancellation law holds for R.

Theorem 1.2.5 The cancellation law holds for R if and only if R has no left or right divisors of

zero.

Proof. Suppose R has the cancellation law. If a 6= 0 and ab = 0, then ab = a0 so that b = 0. It

follows that R has no left divisors of zero. Similarly one can show that R has no right divisors of

zero. Conversely, if R has no left or right divisors of zero and ab = ac for some 0 6= a and b, c ∈ R,

then 0 = ab − ac = a(b − c). It follows that b − c = 0 so that b = c, and hence R has the left

cancellation law. Similarly R has the right cancellation law.

This brings us to the main definition of the lecture.

Definition 1.2.6 (Integral domain) An integral domain is a commutative unital ring with no

divisors of zero.

Example 1.2.7 All of the familiar rings C,R,Q and Z are integral domains.

Theorem 1.2.8 Every field is an integral domain.

Proof. Suppose F is a field and a, b ∈ F satisfy ab = 0. If a 6= 0, then a−1 ∈ F and 0 = a−1ab = b

so that a is not a divisor of zero.

We remark that the proof of this theorem actually shows that if u ∈ R is a unit, then u is not a

divisor of zero.

Theorem 1.2.9 Every finite integral domain is a field.

Proof. Let 1 = a0, a1, . . . , an be all the non-zero elements of a finite integral domain D. If aj is any

one of the elements then each element in the list aja0, aja1, . . . , ajan is distinct by the cancellation

law that holds in an integral domain. It follows that 1 = ajak for some k so that aj is a unit.

Therefore D is a commutative unital ring in which every non-zero element is a unit and hence D is

a field.
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Corollary 1.2.10 If p is prime, then Zp is a field.

Definition 1.2.11 (Characteristic of a ring) If R is a ring, the characteristic of R is the

smallest positive integer n such that n · a = 0 for all a ∈ R. (Here, n · a = a+ · · ·+ a n times.) If

no such positive integer exists, we say R has characteristic zero.

Example 1.2.12 The characteristic of Zn is n. The rings C,R,Q and Z all have characteristic zero.

Theorem 1.2.13 If R is a unital ring, the R has characteristic n if and only if n is the smallest

positive integer such that n · 1 = 0.

Proof. Of course if R has characteristic n, then n · 1 = 0. Conversely, suppose n is the smallest

positive integer that satisfies n · 1 = 0 and let a ∈ R be arbitrary. Then

n · a = a+ · · ·+ a = a(1 + · · ·+ 1) = a(n · 1) = a0 = 0

so that R has characteristic n.

1.3 Field of Quotients

We saw in the last lecture that there is no difference between finite integral domains and finite fields.

The integers Z provide an example of a integral domain that is not a field. The purpose of this

lecture is to show that every integral domain can be regarded as being contained in some field called

the field of quotients of the integral domain. We will see that the field Q of rational numbers is the

field of quotients for the integers. Indeed, the construction given below is just an abstract version

of the construction of the rational numbers from the integers. Nothing we do here is too difficult,

but to be completely careful, the construction is quite long. We therefore will give a brief outline of

what we propose to do. Our goal is to construct the smallest field F that contains a given integral

domain D. We will proceed in four steps:

1. Define the elements of F .

2. Define two binary operations + and · on F .

3. Show that (F,+, ·) is a field.

4. Show that there is an injective ring homomorphism D → F .
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We will use the result of step 4 to identify D with its image in F so that we can think of D as a

subdomain of F . We will leave some of the details to the reader as we proceed.

Step 1. Let D be an integral domain and let S be the subset of D ×D defined by

S = {(a, b) ∈ D ×D : b 6= 0}.

The set S is too big to be our field F , so we cut it down a bit with the following lemma.

Lemma 1.3.1 The relation ∼ defined on S by (a, b) ∼ (c, d) iff. ad = bc is an equivalence relation

on S.

Proof. First, since D is commutative we have ab = ba for all a, b ∈ D so that (a, b) ∼ (a, b). Also,

if (a, b) ∼ (c, d), then ad = bc so that cb = da and hence (c, d) ∼ (a, b). Finally if (a, b) ∼ (c, d) and

(c, d) ∼ (e, f), then ad = bc and cf = de. Now, using this and the commutativity in D, we compute

afd = adf = bcf = bde = bed.

But d 6= 0 so that the cancellation law in D implies af = be and hence (a, b) ∼ (e, f).

We will denote the equivalence class containing (a, b) by [(a, b)]. We now complete step 1 by defining

F = S/ ∼

to be the set of all equivalence classes in S under the relation ∼.

Step 2. We will now give the definitions of + and · in F . We will define these operations in terms

of representatives of the class, so that we will need to show that they are well defined. We state the

precise result in the form of a lemma.

Lemma 1.3.2 The operations + and · defined on F by the formulas

[(a, b)] + [(c, d)] = [(ad+ bc, bd)]

and

[(a, b)][(c, d)] = [(ac, bd)]

are well defined binary operations on F .

Proof. We begin by noting that since [(a, b)], [(c, d)] ∈ F , the pairs (a, b), (c, d) ∈ S so that b 6= 0

and d 6= 0. Since D is an integral domain, it follows that bd 6= 0 and hence (ad+ bc, bd), (ac, bd) ∈ S.
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Therefore the right-hand sides of the defining equations above both lie in F . It remains to show

that the operations are well defined.

Suppose that (a′, b′) ∈ [(a, b)] and (c′, d′) ∈ [(c, d)]. We must show that (a′d′ + b′c′, b′d′) ∈ [(ad +

bc, bd)] and (a′c′, b′d′) ∈ [(ac, bd)]. We will do the first one, and leave the second to the reader.

We have, by hypothesis, a′b = b′a and c′d = d′c so that multiplying the first by d′d and the second

by b′b and adding gives

a′bd′d+ c′db′b = b′ad′d+ d′cb′b.

Using various properties in the integral domain, we have

(a′d′ + b′c′)bd = b′d′(ad+ bc)

so that (a′d′ + b′c′, b′d′) ∈ [(ad+ bc, bd)] as desired. Similarly one shows that (a′c′, b′d′) ∈ [(ac, bd)]

and hence the operations are well defined.

Step 3. In this step, we must simply verify that the operations defined in step 2 make F into a field.

The details are largely boring. Except for multiplicative inverses, each field axiom follows directly

from the corresponding property that holds in the integral domain D. We leave the details to the

reader.

Step 4. It remains to show that D is isomorphic to a subdomain of F . We accomplish this with

the following lemma.

Lemma 1.3.3 The map i : D → F defined by i(a) = [(a, 1)] is an injective ring homomorphism.

Proof. For any two elements a, b ∈ D, we have i(a+ b) = [((a+ b), 1)] and

i(a) + i(b) = [(a, 1)] + [(b, 1)] = [(a · 1 + 1 · a, 1 · 1)] = [(a+ b, 1)]

so that i(a+ b) = i(a) + i(b). Similarly, i(ab) = [(ab, 1)] and

i(a)i(b) = [(a, 1)][(b, 1)] = [(ab, 1 · 1)] = [(ab, 1)]

and hence i is a ring homomorphism. Finally, if i(a) = i(b), then [(a, 1)] = [(b, 1)] so that a · 1 = 1 · b

and hence a = b.

This completes the construction of the field of quotients for the integral domain D. We summarize

what we have proved, as well as clarify in which sense F is the smallest field containing D in the

following theorem.
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Theorem 1.3.4 If D is an integral domain, then there exists a field F and an injective ring ho-

momorphism i : D → F with the property that if E is any field containing D, then there exists an

injective ring homomorphism ψ : F → E with ψ(i(a)) = a for all a ∈ D.

Proof. We let F be the field of quotients constructed above and let i : D → F be the map

i : a 7→ [(a, 1)]. Then we have seen that i is an injective ring homomorphism.

For notation, if 0 6= b ∈ D, then since D ⊆ E and E is a field, b has a multiplicative inverse in E

which we denote by b−1. Note that the element b−1 may not be in D. Now we define ψ : F → E by

ψ([(a, b)]) = ab−1. To show that ψ is well defined, we note that if (a′, b′) ∈ [(a, b)], then ab′ = ba′ so

that ab−1 = a′b′−1 in E. Therefore ψ is well defined. We leave the proof that ψ is an injective ring

homomorphism to the reader.

Corollary 1.3.5 Every field E containing an integral domain D contains the field of quotients F

of D.

Proof. Referring to the proof of theorem (1.3.4), if E contains D, then E contains ψ(F ), and ψ(F )

is isomorphic to F .

Corollary 1.3.6 Any two fields of quotients for an integral domain D are isomorphic.

Proof. If E is another field of quotients of D, then the proof of theorem (1.3.4) can be suitably

modified to show that there is an injective ring homomorphism ϕ : E → F with ϕ(a) = a for all

a ∈ D. You can check that ϕ ◦ ψ = 1F and ψ ◦ ϕ = 1E so that E is isomorphic to F .

1.4 Polynomial Rings

Based on your previous algebraic experience, you are probably completely willing to accept the idea

that we can form polynomials with coefficients from an arbitrary ring R. Moreover, you are most

likely willing to believe that we can add and multiply such polynomials using the usual rules so that

in fact, the set of all polynomials with coefficients in R form a ring R[X]. With that said, we want

to emphasize that we will be working with such polynomials from a slightly different point of view,

and there are many details about the constructions involved that we wish to discuss carefully.

To begin, we will callX an indeterminate rather than a variable. If our ring is the ring Z of integers,

one polynomial in Z[X] is 1X which we write simply as X. In solving polynomial equations, the
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reader is probably used to writing expressions like X = 1 or X = 2. However, we will never write

such things because 1, 2 ∈ Z and X 6∈ Z. Similarly, we will never write X + 4 = 0 because the

polynomial X+ 4 is not the additive identity in the ring Z[X]. At this point, the reader may feel we

are being too formal in our discussion. What we are actually trying to do is to develop the theory

of “solving polynomial equations” purely algebraically, and we want to avoid saying two things are

equal in one context, and not equal in another.

The first step we need to take is to give a formal definition of what a polynomial is. This may seem

easy: a polynomial with coefficients in a ring R should be a formal sum

a0 + a1X + · · ·+ anX
n.

Without saying something else, this definition is not good enough however. After all, surely we want

the two distinct formal sums 1 + 2X and 1 + 2X + 0X2 to denote the same polynomial. Surprising

as it may seem, we work around this difficulty by taking infinite sums! Here is the main definition.

Definition 1.4.1 (Polynomial) Let R be a ring. A polynomial f with coefficients in R is an

infinite formal sum

f =
∞∑
i=0

aiX
i = a0 + a1X + · · ·+ anX

n + · · ·

where ai ∈ R for all i ∈ N and ai = 0 for all but finitely many values of i. The elements ai ∈ R are

called the coefficients of the polynomial. If for some i > 0, ai 6= 0 but aj = 0 for all j > i, then i

is the degree of f . If no such i > 0 exists, then we say f has degree zero.

To simplify our notations for polynomials, we agree that if ai = 0 for i > n, then we will not write

the terms aiXi so that a polynomial is written

a0 + a1X + · · ·+ anX
n.

Moreover, if R is unital, we write Xi in place of 1Xi. Finally, we omit any term with ai = 0 so

that the polynomial 1 + 0X +X2 becomes 1 +X2. An element of the ring R is called a constant

polynomial.

Definition 1.4.2 Let R be a ring and let f =
∑∞
i=0 aiX

i and g =
∑∞
i=0 biX

i be two polynomials

with coefficients in R. We define the sum f + g and the product fg by the formulas

f + g =
∞∑
i=0

(ai + bi)Xi,
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and

fg =
∞∑
i=0

(
i∑

k=0

akbi−k

)
Xi.

We remark that if ai and bi are zero for all but finitely many values of i, then same is true for

ci = ai + bi and di =
∑i
k=0 akbi−k so that f + g and fg are polynomials with coefficients in R. We

remark that if R is not commutative, we should not expect
∑i
k=0 akbi−k to equal

∑i
k=0 bkai−k. The

following theorem is routine, although the notations involved make it seen difficult!

Theorem 1.4.3 If R is a ring, the set R[X] of all polynomials with coefficients in R is a ring under

polynomial addition and multiplication. If R is commutative, then R[X] is commutative. If R is

unital, then R[X] is unital.

Proof. We leave the verification that (R[X],+) is an abelian group to the reader. The verification

of associativity of · and the distributive laws is straight forward, if not a little cumbersome. We will

write out associativity. Applying the ring axioms to ai, bj , ck ∈ R, we compute( ∞∑
i=0

aiX
i

) ∞∑
j=0

bjX
j

( ∞∑
k=0

ckX
k

)

=

[ ∞∑
n=0

(
n∑
i=0

aibn−i

)
Xn

]( ∞∑
k=0

ckX
k

)

=
∞∑
s=0

[
s∑

n=0

(
n∑
i=0

aibn−i

)
cs−n

]
Xs

=
∞∑
s=0

 ∑
i+j+k=s

aibjck

Xs

=
∞∑
s=0

 s∑
m=0

as−m

 m∑
j=0

bjcm−j

Xs

=

( ∞∑
i=0

aiX
i

) ∞∑
m=0

 m∑
j=0

bjcm−j

Xm


=

( ∞∑
i=0

aiX
i

) ∞∑
j=0

bjX
j

( ∞∑
k=0

ckX
k

) ,
and therefore multiplication is associative. Similarly you can show that the distributive laws hold

and hence R[X] is a ring. It is clear that if R, is commutative, then
∑i
k=0 akbi−k =

∑i
k=0 bkai−k so

that fg = gf and hence R[X] is commutative. Finally, if 1 ∈ R is unity, the constant polynomial 1

is obviously unity for R[X].
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Example 1.4.4 The ring Z[X] is the ring of polynomials with integer coefficients. The ring Q[X] is

the ring of polynomials with rational coefficients. Both of these rings are familiar from high school

algebra!

Example 1.4.5 In the ring Z2[X], we have (X + 1)2 = X2 + 1! Moreover, (X + 1) + (X + 1) = 0.

If R is a ring, and X and Y are two indeterminates, then we can form the ring (R[X])[Y ] of

polynomials in Y with coefficients in R[X]. It is fairly obvious, but tedious to prove carefully, that

the ring (R[X])[Y ] is canonically isomorphic to the ring (R[Y ])[X]. That is, every polynomial in

Y whose coefficients are polynomials in X can be re-written as a polynomial in X with coefficients

in R[Y ]. We use this isomorphism to identify (R[X])[Y ] and (R[Y ])[X], and we denote this ring

by R[X,Y ]. Similarly we can define the ring of polynomials in n indeterminates X1, . . . , Xn

R[X1, X2, . . . , Xn]. We will not work with polynomials with more than one indeterminate.

It is a nice exercise to show that if D is an integral domain, then so is D[X]. In particular, if F

is a field, then the polynomial ring F [X] is an integral domain. The field of fractions for F [X] is

called the field of rational functions in X and is denoted by F (X). Similarly, F (X1, . . . , Xn) is

the field of fractions for F [X1, . . . , Xn]. The field F (X1, . . . , Xn) plays an important role in modern

algebraic geometry.

The next goal of the lecture is to show how the problem of “solving polynomial equations” can be

cast in the language of homomorphisms. We begin with the a fundamental theorem about evaluation

homomorphisms.

Theorem 1.4.6 Let F be a subfield of a field E, and let α ∈ E be arbitrary. Then there is a unique

ring homomorphism ϕα : F [X]→ E such that ϕα(X) = α and ϕα(a) = a for all a ∈ F .

Proof. Given α ∈ E, we define ϕα : F [X]→ E by

ϕα

( ∞∑
i=0

aiX
i

)
=
∞∑
i=0

aiα
i.

The right hand side of this defining equation is well defined since ai = 0 for all but finitely many

values of i ∈ N and F ⊂ E. The ring homomorphism property of ϕα is an immediate consequence of

our definitions of polynomial addition and multiplication. We leave the details of the computation

to the reader. Now, if a ∈ F , then a is a constant polynomial and by the definition of ϕα, we have

ϕα(a) = a. Finally, again by definition, we have ϕα(X) = α.
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To show uniqueness, we note that if ψ : F [X] → E satisfies ψ(a) = a for all a ∈ F and ψ(X) = α,

then for all polynomials f =
∑
aiX

i ∈ F [X], we have

ψ(f) = ψ
(∑

aiX
i
)

=
∑

ψ(ai)ψ(X)i =
∑

aiα
i = ϕα(f)

so that ψ = ϕα.

We remark here that the previous theorem is valid (with the same proof!) if F and E are commutative

unital rings. We will primarily be interested in the case where F and E are fields. Although you

would never guess from the simplicity of the proof of this theorem, it is difficult to over estimate the

importance of this theorem in field theory. It forms the basis for nearly every result in Galois theory

- the study of solving polynomial equations. We complete the connection with solving polynomial

equations with the following definition.

Definition 1.4.7 (Zero of a polynomial) Let F be a subfield of a field E and let α ∈ E. If

f ∈ F [X], we say that α is a zero of f if ϕα(f) = 0.

We conclude this lecture with a remark. It may seem to the reader that all we have done in this lecture

is to take a simple idea - solving polynomial equations - and make it unnecessarily complicated. In

fact, what we have done is to cast a familiar problem in the language of mappings (homomorphisms).

We can now use all the machinery we have developed, and will continue to develop, about mappings

to solve these problems. We will see that this point of view is very useful indeed.

1.5 Factorization of Polynomials over a Field

One of the main problems in algebra is finding zeros of a given polynomial f ∈ F [X] where F is a

field. Suppose that F is a subfield of a field E and that f ∈ F [X] factors in F [X], so that f = gh

with g, h ∈ F [X]. If α ∈ E, then using the evaluation homomorphism ϕα, we have

ϕα(f) = ϕα(gh) = ϕα(g)ϕα(h).

Since F [X] is an integral domain, we see that α is a zero for f iff. α is a zero for g or α is a zero

for h. Therefore the problem of finding a zero for the polynomial f can be reduced to the problem

of finding a zero for a factor of f . This is one reason why it is useful to understand factorization in

F [X].
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The following theorem is the backbone for all of the work we will do in this lecture. The reader is

advised to compare this result with the division algorithm for Z, whose importance ws established

back in MAT 150A. Before we state the theorem, we remark that if f ∈ F [X] is a polynomial, then

deg f denotes the degree of f .

Theorem 1.5.1 (Division algorithm for polynomials) Let F be a field and let

f = anX
n + an−1X

n−1 + · · ·+ a0

and

g = bmX
m + bm−1X

m−1 + · · ·+ b0

be two elements of F [X] with an, bm 6= 0 and m > 0. Then there are unique elements q, r ∈ F [X]

such that f = gq + r and deg r < m = deg g.

Proof. First we will show existence. Consider the set

S = {f − gs : s ∈ F [X]}.

Using the Well Ordering Principal, we can find r ∈ S with minimal degree so that f = gq + r for

some q ∈ F [X]. We claim that deg r < m. If deg r = 0, then we are done since m > 0. Otherwise

we have

r = ctX
t + ct−1X

t−1 + · · ·+ c0

with ci ∈ F and ct 6= 0 and t ≥ 1. If deg r = t ≥ m, then

f − qg − (ct/bm)Xt−mg = r − (ct/bm)Xt−mg (1.1)

and the second expression in (1.1) is of the form

r − (ctXt + terms of lower degree),

which is a polynomial of degree lower than t, the degree of r. However, the polynomial in equation

(1.1) can be written in the form

f − g(q + (ct/bm)Xt−m),

so it is an element of S. But this contradicts the minimality of the degree of r. Therefore we must

have t = deg r < m. This shows existence.
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For uniqueness, suppose that f = gq + r and f = gq′ + r′ so that subtracting we have

g(q − q′) = r − r′.

Since deg(r − r′) < deg g, this can happen iff. q − q′ = 0 and hence r − r′ = 0.

We remark here that if F is any field, you can compute the polynomials q and r using polynomial

long division just as you did for the ring R[X] in high school. The following corollaries are also

familiar from high school algebra courses. We state them as corollaries to emphasize that they

follow immediately from the division algorithm, but they are important results on their own.

Corollary 1.5.2 If F is a field, and element α ∈ F is a root of a polynomial f ∈ F [X] if and only

if X − α is a factor of f .

Proof. If f = g(X − α), then ϕα(f) = ϕα(g)(α− α) = 0 so that α is a root of f .

Conversely, suppose α ∈ F is a root and use the division algorithm (1.5.1) to write f = (X−α)q+ r

with deg r < 1. Again, applying the evaluation homomorphism ϕa to f = (X − α)q + r gives

ϕα(r) = 0. But deg r = 0 implies r ∈ F is a constant polynomial so that r = 0 and hence Xα is a

factor of f .

We leave the proof of the next corollary to the reader.

Corollary 1.5.3 If F is a field and f ∈ F [X] has degree n, then f has at most n roots in F .

Example 1.5.4 Let f, g ∈ Z5[X] be defined by f = X4−3X3 +2X2 +4X−1 and g = X2−2X+3.

Find q, r ∈ Z5[X] such that f = gq + r.

We will encounter polynomials that cannot be factored (in a non-trivial manner) at all.

Definition 1.5.5 (Irreducible polynomial) If F is a field, a non-constant polynomial f ∈ F [X]

is irreducible over F if f = gh and g, h ∈ F [X] implies either g or h is a constant.

You will show in the homework that an element f ∈ F [X] is a unit if and only if it is a constant.

Therefore a polynomial f ∈ F [X] is irreducible iff. f is not a unit and f = gh implies that either

g or h is a unit. This is taken as a definition of irreducible in any ring for an abstract theory of

factorization. We will content ourselves to polynomial rings over fields.

We leave it as an exercise to show that degree 1 polynomials are irreducible.

Note that we have defined the notion of a polynomial being irreducible over a field F , not just

irreducible. Indeed, a polynomial f ∈ F [X] may be irreducible over F , but reducible (= not

irreducible) over E if F ≤ E.
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Example 1.5.6 The polynomial X2 − 2 is irreducible over Q, but over R we have X2 − 2 =

(X +
√

2)(X −
√

2) so that it is reducible over R.

The problem of determining if a polynomial f ∈ F [X] is irreducible can be quite difficult. The

following theorem states that for low degree polynomials, the problem is equivalent to finding zeros.

Theorem 1.5.7 If f ∈ F [X] and deg f ≤ 3, then f is reducible over F if and only if f has a root

in F .

Proof. If f is reducible over F , then f = gh with g, h ∈ F [X] and deg g,deg h < deg f . It follows,

without loss of generality, that deg g = 1 so that, up to a factor in F , g = X − α for some α ∈ F .

It follows that α is a root of f .

Conversely, if α ∈ F is a root of f , then X − α is a factor so that f is reducible over F .

The theory of factorization of polynomials over a field is very similar to the theory of factorization of

ordinary integers in the sense that the analog of the fundamental theorem of arithmetic holds in F [X].

There is a wider class of rings, unique factorization domains, in which all elements can be factored

uniquely into a product of irreducible elements. Historically, such rings were first investigated

in attempts to prove the famous “Fermat’s Last Theorem”. We will not undertake the study of

factorization in rings in this course. Rather, we will content ourselves with the results of that theory

as they apply in polynomial rings over fields. As we proceed, the reader is urged to keep in mind that

irreducible polynomials are the analogs of prime integers. This should make the following theorem

come as no surprise. Although we could give a proof of the theorem now, it will be awkward with

out some results about homomorphism so that we delay the proof until chapter 2 of these notes.

Before we state the theorem, let us say that for f, g ∈ F [X], that f divides g if g = fh for some

h ∈ F [X].

Theorem 1.5.8 Let p ∈ F [X] be an irreducible polynomial. If p divides the product rs with r, s ∈

F [X], then p divides r or p divides s.

Corollary 1.5.9 If p ∈ F [X] is irreducible and p divides r1 · · · rn, ri ∈ F [X], then p divides ri for

at least one i.

Proof. We induct on n, the case n = 1 being trivial. Suppose the theorem holds for some n ≥ 1 and

suppose that p divides r1 · · · rnrn+1. Let s = r1 · · · rn and r = rn+1 so that p divides sr. Therefore p
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divides s or p divides r by theorem (1.5.8). If p divides r = rn+1, we are done. Otherwise p divides

s = r1 · · · rn and hence p divides ri for some i ≤ n by induction.

Here is the main theorem we are after - the analog of the fundamental theorem of arithmetic for

polynomials over a field. We remind the reader that the units in the ring F [X] are precisely the

non-zero constants.

Theorem 1.5.10 If F is a field, then every non-constant polynomial f ∈ F [X] can be written as a

finite product of irreducible polynomials, and this product is unique up to the order of the irreducible

factors and multiplication by a unit in F .

Proof. We prove the existence of such a factorization by induction on deg f . If deg f = 1, then f

is irreducible. Suppose that the theorem is true for all polynomials of degree less than or equal to n

for some n ≥ 1 and suppose that deg f = n+ 1. If f is irreducible, we are done. Otherwise we have

f = gh with deg g,deg h ≤ n. By induction, both g and h factor into a product of irreducibles and

hence f factors into a product of irreducibles. This show existence.

It remains to show the uniqueness statement. Suppose then that

p1p2 · · · pr = f = q1q2 · · · qs

are two factorizations of f into irreducible polynomials. Now, p1 obviously divides f and hence,

by the corollary to theorem (1.5.8), p1 divides qi for some i. Without loss of generality, we say p1

divides q1 so that

q1 = u1p1

for some u1 ∈ F [X]. Since q1 is irreducible, we must have u1 ∈ F a unit. Substituting u1p1 for q1

and canceling gives

p2 · · · pr = u1q2 · · · qs.

Continuing (inducting), we have

1 = u1u2 · · ·urqr+1 · · · qs.

Looking at the degree of each side, we see that we must have r = s so that the irreducible factors pi

and qi were the same up to a unit.

Example 1.5.11 You can show that the polynomial f = X4 + 3X3 + 2X + 4 ∈ Z5[X] factors

into irreducibles as f = (X − 1)3(X + 1). This is the same factorization, up to units, as f =

(X − 1)2(2X − 2)(3X + 3).
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1.6 Non-commutative Examples

In this lecture, we discuss some non-commutative rings that will be very important in the rest of

our course.

In MAT 150B, we saw that groups “arise naturally” as groups of permutations. In the same sense,

our first example can be thought of as a natural example of a ring. Let A be any abelian group, and

recall that a group homomorphism ϕ : A→ A is also called an endomorphism of A. We let

End(A) = {ϕ : A→ A : ϕ is an endomorphism of A}

denote the set of all endomorphisms of A.

Theorem 1.6.1 If A is an abelian group, the set End(A) of all endomorphisms of A is a unital

ring under the operations + and · defined for all ϕ,ψ ∈ End(A) and all a ∈ A by

(ϕ+ ψ)(a) = ϕ(a) + ψ(a)

and

(ϕψ)(a) = ϕ(ψ(a)).

Proof. We will leave the verification that (End(A),+) is an abelian group under addition to the

reader. Moreover, it is well know that function composition is an associative operation and obviously

the identity map 1A : A→ A is an identity for this operation. It remains to show that the distributive

laws hold. If ϕ,ψ, θ ∈ End(A) and a ∈ A, then using the homomorphism property and the definitions

of + and ·, we have

θ(ϕ+ ψ)(a) = θ(ϕ(a) + ψ(a)) = θ(ϕ(a)) + θ(ψ(a)) = (θϕ)(a) + (θψ)(a)

and therefore θ(ϕ+ ψ) = θϕ+ θψ. Similarly you can show the right distributive law.

Example 1.6.2 If V is a finite dimensional vector space over a field F , then the set

EndF (V ) = {ϕ : V → V : ϕ is F -linear}

is a subring of End(V ). We leave it as an exercise for the reader to show that choosing a basis B for

V determines a ring isomorphism from EndF (V ) to Matn(F ) where n = dimF (V ).
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Example 1.6.3 Let F be a field, and consider the abelian group (F [X],+) which we denote (with

some possible confusion) by F [X]. We consider three special elements of End(F [X]).

First, let A : F [X]→ F [X] be defined by

A :
∞∑
i=0

aiX
i 7→

∞∑
i=0

aiX
i+1.

We will call A the “shift operator”. We leave it to the reader to show that A is a group endomorphism

A : F [X]→ F [X]. Note that A is not a ring homomorphism.

Second, let B : F [X]→ F [X] be defined by

B :
∞∑
i=0

aiX
i 7→

∞∑
i=1

iaiX
i−1.

Again, the reader can easily verify that B is a group homomorphism. Note that B is just formal

differentiation of polynomials. In your homework, you will show that AB − BA = 1 where 1 is the

identity endomorphism 1 : F [X] → F [X]. Finally, if α ∈ F , multiplication by α defines a group

homomorphism F [X]→ F [X] (f 7→ αf).

The subring W of End(F [X]) generated by A,B and the multiplications by all α in F is called the

Weyl algebra.

We will study endomorphism rings End(A) extensively.

Another important example of non-commutative rings are group rings. Here is the definition.

Definition 1.6.4 (Group ring) Let G = {1 = g1, g2, . . . , gn} be a finite group and R a commuta-

tive unital ring. Let R(G) denote the set of all formal sums

n∑
i=1

aigi.

R(G) is called the group ring of G over R. If F is a field, F (G) is called the group algebra of

G over F .

As usual, we need to justify the terminology “ring” in group ring. We will give the operations in

the statement of the following theorem.

Theorem 1.6.5 If G is a finite group and R is a commutative unital ring, then the operations +

and · defined on R(G) defined for all a, b ∈ R(G) by(
n∑
i=1

aigi

)
+

(
n∑
i=1

bigi

)
=

n∑
i=1

(ai + bi)gi,
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and  n∑
j=1

ajgj

( n∑
k=1

bkgk

)
=

n∑
i=1

 ∑
gjgk=gi

ajbk

 gi

make (R(G),+, ·) a unital ring.

Proof. By now, the participating reader can see immediately that (R(G),+) is an abelian group

with identity
∑

0gi. The distributive laws follows at once since the multiplication is defined by

formally distributing and collecting like terms. The associativity law is not difficult to prove, but it

is tedious to type! We leave it as an exercise. If g1 = e is the identity element, then the element of

R(G) defined by a1 = 1 and ai = 0 for i > 1 is unity.

The unity element of R(G) is a member of the family of elements of R(G) defined by ai = 1 and

aj = 0 for j 6= i. This implies that (R(G), ·) contains an isomorphic copy of G. In particular, we see

that R(G) will not be commutative if G is non-abelian.

It can be shown that every unitary representation of a finite group G corresponds to a unitary

representation of the group algebra C(G). This is the last bit of theory that we were missing to

prove the orthogonality relations last quarter.

Our last example will be our first example of a skew-field. Let H = R
4 as an additive abelian group

and let

1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), and k = (0, 0, 0, 1)

so that we can write every element of H as a sum

a = a1 + a2i+ a3j + a4k

with a1, a2, a3, a4 ∈ R. We define a multiplication · on H by formally distributing and using the

relations

1a = a1 = a for all a ∈ H,

i2 = j2 = k2 = −1,

and

ij = k, jk = i, ki = j, ji = −k, kj = −i, and ik = −j.

These relations are easy to remember if you think of the so called “cross product” of the usual unit

vectors i, j, k ∈ R3. Or, if you prefer, in the sequence

i, j, k, i, j, k,
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the product from left to right of two adjacent terms in the next term to the right, and the product

from right to left of two adjacent terms is the negative of the next term to the left.

Once again, the distributive laws will hold in H by definition, and 1 is clearly unity. The verification

of the associativity of · is a tedious chore that we leave to the reader. If we put all of this together,

then we see tat (H,+, ·) is a non-commutative unital ring. To show H is a skew field, we first define,

for all a ∈ H, the length of a by

|a|2 = a2
1 + a2

2 + a2
3 + a2

4

and the conjugate of a by

a = a1 − a2i− a3j − a4k.

We leave it as an exercise to show that |a| = 0 iff. a = 0 and aa = |a|2. It follows that if a 6= 0,

then a−1 = a/|a|2. Therefore every non-zero element of H is a unit so that H is a skew field. We

call H the quaternions. The symbol H is used in reference to Sir William Rowan Hamilton, who

discovered this division ring in 1843.

We will look at some interesting properties of H in the exercises. In particular, you will show that

the set

U = {a ∈ H : |a| = 1}

is isomorphic to the special unitary group SU2, and the conjugacy class defined by trA = 0 (the

equator) is the unit 2-sphere in the space Span(i, j, k) of “purely imaginary” quaternions.
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Chapter 2

Ideals and Quotient Rings

2.1 Ring Homomorphisms

Some of our discussion on ring theory up until now has been awkward due to the absence of a careful

investigation of ring homomorphisms. As we have said, any investigation of an algebraic object must

include an investigation of the functions that preserve the algebraic structures, whatever they may

be. Also, we must look at the space of fibers (quotients) of these maps because it also has the

same structure! Examples of this scheme of ideas include groups, with group homomorphisms and

quotient groups and vector spaces, with linear maps and quotient spaces. We will now investigate

these notions for rings. As we will see, half the work is already done from what we know about the

abelian groups (R,+).

We had to define the notion of ring homomorphism and isomorphism to discuss polynomial evaluation

homomorphisms. We repeat the definition here for easy reference.

Definition 2.1.1 (Ring homomorphism) If R and S are rings, a map ϕ : R → S is called a

ring homomorphism if for all a, b ∈ R, we have both

1. ϕ(a+ b) = ϕ(a) + ϕ(b),

2. ϕ(ab) = ϕ(a)ϕ(b).

We have seen several example of ring homomorphisms, so lets get right to some theory. In the

proofs, note how we use the fact that ϕ : (R,+)→ (S,+) is a group homomorphism.
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Theorem 2.1.2 Let ϕ : R→ S be a ring homomorphism.

1. If R′ ≤ R is a subring, then ϕ(R′) ≤ S is a subring.

2. If S′ ≤ S is a subring, then ϕ−1(S′) ≤ R is a subring.

3. If R is unital and ϕ(1R) 6= 0S, then ϕ(S) is unital and ϕ(1R) = 1S is unity.

Proof. (1) We know that ϕ(R′) is a subgroup of S since ϕ is a group homomorphism. Moreover,

the equation ϕ(a)ϕ(b) = ϕ(ab) holds for all a, b ∈ R′, and ab ∈ R′ so that ϕ(R′) is closed under

multiplication and hence is a subring of S.

(2) Exercise.

(3) Note that for all a ∈ R, then writing 1 = 1R, we have

ϕ(a) = ϕ(1a) = ϕ(1)ϕ(a) and ϕ(a) = ϕ(a1) = ϕ(a)ϕ(1).

Therefore, if ϕ(1) 6= 0, it is a multiplicative identity and hence ϕ(1) = 1S by uniqueness of such an

identity.

Roughly speaking, the theorem states that ring homomorphisms send subrings to subrings, and

unity to unity. Here is a long over due definition.

Definition 2.1.3 (Kernel of a ring homomorphism) If ϕ : R → S is a ring homomorphism,

then the kernel of ϕ is the subset

kerϕ = {a ∈ R : ϕ(a) = 0}.

Note that the kernel of a ring homomorphism ϕ is just the kernel of ϕ considered as a homomorphism

of abelian groups. In particular, we have the following useful fact.

Proposition 2.1.4 A ring homomorphism ϕ : R→ S is injective if and only if kerϕ = {0}.

Recall that a ring homomorphism ϕ is an isomorphism if ϕ is bijective. It should come as no

surprise that the class of all rings is partitioned into isomorphism classes by the usual equivalence

relation. The same techniques that we used to show two groups are not isomorphic can be applied to

rings. In addition, we can look for structural properties in rings such as being unital, commutative,

etc....

Example 2.1.5 The ring Mat2(R) of 2×2 real matrices is not isomorphic to C. Note that Mat2(R)

has zero divisors and the field C does not.
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Example 2.1.6 The field R is not isomorphic to the field C. Any isomorphism ϕ : C→ R maps 1

to 1 and hence −1 to −1. But then ϕ(i) ∈ R satisfies

ϕ(i)2 = ϕ(i2) = ϕ(−1) = −1

which is absurd.

Here is the main theorem of the lecture.

Theorem 2.1.7 Let ϕ : R → S be a ring homomorphism and let I = kerϕ. The operation defined

on the quotient group R/I defined by

(a+ I)(b+ I) = ab+ I

is a well defined binary operation making R/I into a ring. If R is commutative, then R/I is

commutative. If R is unital, then R/I is unital provided I 6= R.

Proof. The whole issue here is to show that the operation is well defined. That is, the associative

and distributive laws will follow immediately from those laws in R. Suppose then that a′ − a ∈ I

and b′ − b ∈ I so that a′ = a+ i1 and b′ = b+ i2 for some i1, i2 ∈ I. Then we have

a′b′ = (a+ i1)(b+ i2) = ab+ ai2 + i1b+ i1i2.

Now, ϕ(ai2) = ϕ(a)ϕ(i2) = ϕ(a)0 = 0 and similarly ϕ(i1b) = ϕ(i1i2) = 0 so that ai2, i1b, i1i2 ∈ I. It

follows that a′b′−ab ∈ I and hence ab+I = a′b′+I. The reader can now easily verify the remaining

ring axioms and that R/I is commutative if R is commutative. Finally, 1+I is clearly unity if 1 ∈ R

is unity.

The ring R/I is called the quotient ring.

2.2 Ideals

The purpose of this lecture is to abstract the properties of the kernel of a ring homomorphism and

investigate quotient rings further. Recall from the proof of the last theorem in the previous lecture

that if ϕ : R → S is a ring homomorphism, a ∈ kerϕ and b ∈ R, then ab ∈ kerϕ and ba ∈ kerϕ.

Moreover, our work in group theory shows that kerϕ is a subgroup of the additive group (R,+).

We abstract these ideas in the following definition.
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Definition 2.2.1 (Ideal) If R is a ring, a subset I of R is an ideal in R if

1. (I,+) ≤ (R,+) is an additive subgroup of (R,+),

2. For all a ∈ I and all b ∈ R, ab ∈ I and ba ∈ I.

If we let bI = {ba : a ∈ I} and similarly define Ib, then an ideal in R is a subgroup I that satisfies

bI ⊂ I and Ib ⊂ I for all b ∈ R.

Example 2.2.2 If ϕ : R→ S is a ring homomorphism, then I = kerϕ is an ideal in R.

Example 2.2.3 In the ring of integers, every subgroup 〈n〉 is an ideal. This follows since if a ∈ 〈n〉,

then a = nk for some k ∈ Z and hence for all b ∈ Z, we have ab = nbk = ba so that ab, ba ∈ 〈n〉.

Conversely, if I is an ideal in Z, then since I is a subgroup of the cyclic group (Z,+), we must have

I = 〈n〉 for some n ∈ Z. To emphasize we are dealing with rings, we will denote the ideal 〈n〉 by (n).

We have shown in this example that every ideal in the ring Z has the form (n) for some n. Such

rings are called principal ideal rings, and we will study them in some detail.

In ring theory, ideals play the same role as normal subgroups in the theory of groups as the following

theorem shows.

Theorem 2.2.4 Let R be a ring and let I be an ideal in R, then the operation defined on the quotient

group R/I defined by

(a+ I)(b+ I) = ab+ I

is a well defined binary operation making R/I into a ring. If R is commutative, then R/I is

commutative. If R is unital, then R/I is unital provided I 6= R.

Proof. We can copy the proof for the case I = kerϕ, a ring homomorphism without any changes at

all! That is, once again the whole issue here is to show that the operation is well defined. Suppose

then that a′ − a ∈ I and b′ − b ∈ I so that a′ = a+ i1 and b′ = b+ i2 for some i1, i2 ∈ I. Then we

have

a′b′ = (a+ i1)(b+ i2) = ab+ ai2 + i1b+ i1i2.

Now, ai2, i1b, i1i2 ∈ I since I is an ideal. It follows that a′b′ − ab ∈ I and hence ab + I = a′b′ + I.

The reader can now easily verify the remaining ring axioms and that R/I is commutative if R is

commutative. Finally, 1 + I is clearly unity if 1 ∈ R is unity.
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Continuing to parallel the theory of quotient groups, we remark that at this point, we know that

kernels of ring homomorphisms are ideals, and we can form quotient rings by any ideal. The next

step is to show that every ideal is the kernel of a ring homomorphism by showing that the quotient

map R→ R/I is in fact a ring homomorphism. We state the precise result as a theorem.

Theorem 2.2.5 If I is an ideal in R, then the quotient map η : R→ R/I defined by

η : a 7→ a+ I

is a ring homomorphism with ker η = I.

Proof. Given what we know from group theory, it suffices to show that η preserves the multiplication

operation. So let a, b ∈ R and compute

η(ab) = ab+ I = (a+ I)(b+ I) = η(a)η(b).

We will look at the isomorphism theorems for quotient rings in the next lecture. Here are some

useful facts about ideals.

Proposition 2.2.6 If I and J are ideals in a ring R, then

1. I ∩ J is an ideal.

2. The set I + J = {a+ b : a,∈ I, b ∈ J} is an ideal.

3. If R is unital, I = R if and only if I contains a unit.

Proof. (1) We know I ∩ J is a subgroup from MAT 150A. If a ∈ I ∩ J and b ∈ R, then since both

I and J are ideals, we have ab ∈ I and ab ∈ J . Similarly, ba ∈ I and ba ∈ J so that ab, ba ∈ I ∩ J

and hence I ∩ J is an ideal.

(2) Since R is abelian as a group under +, we know I+J = J+I and hence I+J is a subgroup from

our work in MAT 150A. (See the section on product of groups in the 150A notes.) Now, since both I

and J are ideals, if a+b ∈ I+J and c ∈ R, then ca ∈ I and cb ∈ J so that c(a+b) = ca+cb ∈ I+J .

Similarly (a+ b)c ∈ I + J so that I + J is an ideal.

(3) Suppose that R is unital. If I = R, the 1 ∈ I and 1 is a unit so I contains a unit. Conversely,

suppose that u ∈ I and u is a unit. Then there exists an element v ∈ R with vu = 1 and hence

1 = vu ∈ I since I is an ideal. But then for all a ∈ r, a = a1 ∈ I and hence I = R.
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We note that for any ring R, the subgroups R and 0 are always ideals. Part (3) of this proposition

gives us the following corollary.

Corollary 2.2.7 If F is a field, then F and 0 are the only ideals in F .

Definition 2.2.8 (Simple ring) A non-trivial ring is called simple if R and 0 are the only ideals

in R.

The corollary states that all fields are simple. There are simple rings that are not fields, as the

following example shows.

Example 2.2.9 Let F be a field and let R = Matn(F ) be the ring of n × n matrices over F for

some n > 1. We claim that R is simple. To show this, suppose that 0 6= I is an ideal in R. Since

I 6= 0, there exists a non-zero element A ∈ I. Since A 6= 0, we must have at least one entry, say

ai0j0 6= 0. Using the matrix units eij , we note that for any k ∈ {1, 2, . . . , n}, we have

eki0Aej0k = ai0j0ekk

and hence ai0j0ekk ∈ I since A ∈ I and I is an ideal. It follows that

ai0j0In =
n∑
k=1

ai0j0ekk ∈ I.

But ai0j0 6= 0 so that ai0j0In is invertible (a unit). It follows that I = R and hence R is simple.

Definition 2.2.10 (Principal ideal) Let R be a commutative unital ring and let a ∈ R. The

reader can show that the set

(a) = {ra : r ∈ R}

is an ideal of R. We call (a) the principal ideal generated by a. If R has the property that every

ideal in R is principal, then R is called a principal ideal ring (PIR).

Example 2.2.11 Since every ideal in Z is of the form (n), Z is a PIR.

Example 2.2.12 If R is a simple commutative unital ring, then R is a PIR. This follows since R

only has two ideal, 0 and R, and 0 = (0) and R = (1) so that both are principal.

We end this lecture with an important result about polynomial rings over a field.

Theorem 2.2.13 If F is a field, the polynomial ring F [X] is a PIR.
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Proof. We know F [X] is a commutative unital ring so that it suffices to show that every ideal I in

F [X] is principal. The zero ideal is always principal, so let 0 6= I be an ideal in F [X] and choose a

non-zero polynomial f ∈ I with minimum degree. Without loss of generality, we may assume the

leading coefficient of f is 1, otherwise we multiply f by the inverse of its leading coefficient getting

another polynomial in I with the same degree and leading coefficient 1. We claim (f) = I. Clearly

(f) ⊂ I since f ∈ I and I is an ideal. If deg f = 0, then f ∈ F [X] is a unit and hence I = F [X] = (1)

is principal. Otherwise, deg f > 1 and given any g ∈ I, we can use the division algorithm to write

g = fq + r

where q, r ∈ F [X] and either r = 0 or deg r < deg f . Now, f ∈ I so that fq ∈ I since I is an ideal.

Therefore r = g − gq ∈ I and hence r = 0 by the minimality of the degree of f . It follows that

g = fq ∈ (f) and hence I ⊂ (f). We have already shown that (f) ⊂ I and hence (f) = I and I is

principal.

2.3 Quotient Rings

In this lecture, we will state and prove the ring theoretic analog of the first isomorphism theorem.

We will also give some examples to show how this theorem is used analyze the structure of quotient

rings. We begin with a general lemma about lifting homomorphisms.

Lemma 2.3.1 (Lifting lemma) Suppose that R, S and R′ are rings, ϕ : R → S and π : R → R′

are ring homomorphisms and π is surjective. Then there exists a unique ring homomorphism ψ :

R′ → S such that ψ ◦ π = ϕ if and only if kerπ ⊆ kerϕ. Moreover, ψ is surjective if and only if ϕ

is surjective and ψ is injective if and only if kerπ = kerϕ.

Proof. By hypothesis, we are given the diagram

R
ϕ - S

@
@
@
@
@

π
R

R′

with π : R → R′ surjective and kerπ ⊆ kerϕ. We define ψ : R′ → S as follows. Given a′ ∈ R′,

choose a ∈ R with π(a) = a′ (π is onto) and define ψ(a′) = ϕ(a). We must show that ψ is well
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defined, independent of the choice of the preimage of a′. Suppose then that b ∈ R satisfies π(b) = a′.

Then a− b ∈ kerπ and hence a− b ∈ kerϕ so that ϕ(a) = ϕ(b) and hence ψ is well defined.

Clearly ψ is a ring homomorphism since it is defined by ϕ and ϕ and π and both of these maps are

ring homomorphisms. Specifically, if a′, b′ ∈ R′ and a, b ∈ R satisfy π(a) = a′ and π(b) = b′, then

π(a+ b) = a′ + b′ and π(ab) = a′b′ and hence we have, by definition,

ψ(a′ + b′) = ϕ(a+ b) = ϕ(a) + ϕ(b) = ψ(a′) + ψ(b′)

and

ψ(a′b′) = ϕ(ab) = ϕ(a)ϕ(b) = ψ(a′)ψ(b′).

Now, if ψ′ : R′ → S also satisfies ψ′ ◦ π = ϕ, then for all a′ ∈ R′, we have

ψ′(a′) = ψ′(π(a)) = ϕ(a) = ψ(π(a)) = ψ(a′)

so that ψ = ψ′ and hence ψ is unique.

Now, if ϕ is surjective and c ∈ S, then choose a ∈ R with ϕ(a) = c so that ψ(π(a)) = ϕ(a) = c and

hence ψ is surjective.

If kerπ = kerϕ and ψ(a′) = ψ(b′), then if π(a) = a′ and π(b) = b′, then ϕ(a − b) = ϕ(a) − ϕ(b) =

ψ(a′) − ψ(b′) = 0 so that a − b ∈ kerϕ. Therefore a − b ∈ kerπ so that a′ = b′ and hence ψ is

injective.

Corollary 2.3.2 (First isomorphism theorem) If ϕ : R → S is a ring homomorphism and

I = kerϕ, then R/I is isomorphic to imϕ.

Proof. We apply the lifting lemma to the diagram

R
ϕ- imϕ ⊂ - S

@
@
@
@
@

π
R
R/I

where π : R→ R/I is the quotient map. That is, ϕ is onto its image and kerϕ = I = kerπ so that

the lifting lemma (2.3.1) gives an isomorphism ψ : R/I → imϕ.

Corollary 2.3.3 (Second isomorphism theorem) Let R be a ring and let I and J be two ideals

in R. Then I ∩ J is an ideal in J , I is an ideal in I + J and

(I + J)/I ∼= J/(I ∩ J).
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Proof. Clearly I ∩ J is an ideal in J and I is an ideal in I + J . Let ϕ be the composition

J ⊂ - I + J
η- (I + J)/I.

Clearly kerϕ = I∩J so that we may use the first isomorphism theorem (2.3.2) to conclude J/(I∩J) ∼=

imϕ. Now, if (a+ b) + I ∈ (I + J)/I, then since a ∈ I, we have

(a+ b) + I = b+ I

and hence ϕ(b) = b+ I = (a+ b) + I so that ϕ is surjective. This completes the proof.

Corollary 2.3.4 (Third isomorphism theorem) Let R be a ring and let I and J be two ideals

in R such that I ≤ J ≤ R. Then J/I is an ideal in R/I and

(R/I)/(J/I) ∼= R/J.

Proof. First, consider the diagram

R
ηI - R/I

@
@
@
@
@

ηJ
R
R/J

Since I = ker ηI and J = ker ηJ , the lifting lemma implies that we have a surjective map ϕ : R/I →

R/J commuting with the quotient maps ηI and ηJ . Moreover, if a+ I ∈ R/I , then ϕ(a+ I) = a+J

by construction. Therefore we know that

kerϕ = {a+ I ∈ R/I : a ∈ J} = ηI(J) = J/I.

It follows that J/I is an ideal in R/I (it is a kernel), and we have the diagram

R
ηI - R/I

η- (R/I)/(J/I)

@
@
@
@
@

ηJ
R
R/J

ϕ

?

where η : R/I → (R/I)/(J/I) is the quotient map. Since ϕ is surjective and kerϕ = ker η, the first

isomorphism theorem (2.3.2) implies that (R/I)/(J/I) ∼= R/J .

We conclude the lecture with some examples of identifying quotient rings.
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Example 2.3.5 If F is a field, then F [X]/(X) is isomorphic to F . To see this, we note that the

evaluation homomorphism ϕ0 : F [X] → F is trivially surjective since ϕ0(a) = a for all a ∈ F .

Moreover, we see that f ∈ kerϕ0 iff. f(0) = 0 iff. f ∈ (X) by Corollary 1.5.2 so that kerϕ0 = (X).

The result now follows directly from the first isomorphism theorem.

Example 2.3.6 The ring R[X]/(X2 +1) is isomorphic to C. To see this, we consider the evaluation

homomorphism ϕi : R[X]→ C. Again ϕi is clearly surjective since for all a+ ib ∈ C (a, b ∈ R), we

have ϕi(a+ bX) = a+ bi. Moreover, X2 + 1 ∈ kerϕi since i2 + 1 = 0, and hence (X2 + 1) ⊆ kerϕi.

Now, since R[X] is a PIR, we have kerϕi = (f) for some f ∈ R[X]. Using the division algorithm in

R[X], we can write

f = (X2 + 1)q + r

where q, r ∈ R[X] and either r = 0 or deg r < 2. Applying ϕi to this equality shows that ϕi(r) = 0.

If deg r = 1, this implies that i ∈ R, a contradiction. Therefore r ∈ R must be a constant and hence

ϕi(r) = 0 implies r = 0. This shows that f ∈ (X2 + 1) and hence kerϕi = (f) ⊆ (X2 + 1).

We have shown that kerϕi = (X2 + 1) and hence the first isomorphism theorem implies that

R[X]/(X2 + 1) ∼= C.

We will see that both of these examples are quite general.

2.4 Prime and Maximal Ideals

The purpose of this lecture is to look more closely at the lattice of ideals in a ring R. Historically,

many of these notions were first investigated abstractly in the study of factorization in rings. The

terminology involved here reflects these origins.

We recall here that every ring R has at least two ideals, the improper ideal R and the trivial

ideal {0}. A ring is simple if these are the only two ideals. The quotients by these ideals are not

interesting at all: R/R has only one element, and R/(0) is obviously isomorphic to R. We will

therefore turn our attention to ideals I in R such that {0} 6= I 6= R. Such an ideal is called a

proper nontrivial ideal.

Let us investigate the conditions under which the quotient ring R/I is a integral domain or a field.

The answer is not as straight forward as you might expect.

Definition 2.4.1 (Maximal ideal) If R is a ring, and ideal M is maximal if M 6= R, and if N

is any ideal of R satisfying M ⊆ N , then either N = M or N = R.
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Another way to state this (very important) definition is as follows. An ideal M is maximal if M is

a proper ideal in R, and R is the only ideal of R that properly contains M . One useful fact about

maximal ideals in commutative unital rings is given in the following theorem.

Theorem 2.4.2 If R is a commutative unital ring, and M is an ideal in R, then M is maximal iff.

R/M is a field.

Proof. Suppose that M is maximal. We know R/M is a commutative unital ring by theorem

2.2.4. It therefore suffices to show that every non-zero element of R/M is a unit. To this end, let

a + M ∈ R/M with a + M 6= M (i.e. a + M is non-zero in R/M). Now, let N = (a) + M so that

N is an ideal in R by proposition 2.2.6(2). Moreover, we clearly have M ⊆ N and a ∈ N . But

a+M 6= M so that a 6∈M . It follows that N properly contains M and hence N = R by maximality.

Since 1 ∈ R, we can write 1 = ra+m for some r ∈ R and m ∈M and hence we have

1 +M = (ra+m) +M = ra+M = (r +M)(a+M).

This shows that a+M is a unit in R/M and hence R/M is a field.

Conversely, suppose that R/M is a field. Then R/M is unital and hence M 6= R. If N is an ideal of

R such that M ⊂ N ⊂ R (proper inclusions), then the third isomorphism theorem implies that N/M

is an ideal of R/M . But R/M is a field so that the only two ideals of R/M are R/M (improper)

and M/M (trivial). In the first case, we have N = R, and in the second we have N = M . Therefore

M is maximal.

This theorem is false if you omit commutativity (i.e. you do not even get a division ring). For

example, we have shown that (0) is a maximal ideal in the matrix ring R = Matn(F ), but R/(0) ∼= R

has zero divisors. We now turn to the question: when is R/I an integral domain. The zero divisor

condition for cosets reads: (a + I)(b + I) = I implies that a + I = I or b + I = I. This motivates

the following definition.

Definition 2.4.3 (Prime ideal) An ideal N 6= R in a commutative ring R is prime if for all

a, b ∈ R, ab ∈ N implies that either a ∈ N or b ∈ N .

Theorem 2.4.4 If R is a commutative unital ring, and N 6= R is a proper ideal in R, then N is

prime iff. R/N is an integral domain.

Proof. Again, since N 6= R, we know R/N is a commutative unital ring by theorem 2.2.4. It

therefore remains to show that R/N has no divisors of zero. Suppose then that (a+N)(b+N) = N
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in R/N . Then ab+N = N so that ab ∈ N . But N is a prime ideal so that either a ∈ N or b ∈ N .

It follows that a+N = N or b+N = N so that R/N has no divisors of zero.

Conversely, if R/N is an integral domain, then it is a unital ring so that N 6= R. Moreover, if

a, b ∈ R and ab ∈ N , then (a + N)(b + N) = ab + N = N so that a + N = N or b + N = N . It

follows that a ∈ N or b ∈ N and hence N is a prime ideal.

Corollary 2.4.5 If R is a commutative unital ring, then every maximal ideal is prime.

Proof. If M is maximal, then R/M is a field, hence R/M is an integral domain, and hence M is

prime.

Definition 2.4.6 (Divides, prime element, irreducible element) Let R be a commutative uni-

tal ring. If a, b ∈ R, we say a divides b if b = ar for some r ∈ R. We write a|b if a divides b.

An element p ∈ R is called prime if p is not a unit and p|ab implies p|a or p|b. An element r is

irreducible if r is not a unit and r = ab implies that either a or b is a unit.

We now specialize to the class of PIRs that have no divisors of zero. Such rings are called principle

ideal domains (PID). We remark that if F is a field, then F [X] is a PID.

Theorem 2.4.7 If R is a PID and 0 6= p ∈ R, then (p) is a maximal ideal if and only if p ∈ R is

irreducible.

Proof. Suppose that (p) is maximal. Then (p) 6= R and hence p is not a unit by proposition

2.2.6(3). If p = ab, then ab ∈ (p). Now, (p) is a maximal ideal, and hence (p) is a prime ideal by

corollary (2.4.5) so that we have a ∈ (p) or b ∈ (p). If a ∈ (p), then a = pr for some r ∈ R and hence

p = ab = prb.

This implies that 1 = rb since R is a integral domain, and hence b is a unit. Similarly, if b ∈ (p),

then a is a unit and hence p is irreducible.

Conversely, if p is irreducible, then p is not a unit and hence (p) 6= R. To show that (p) is maximal,

suppose that (p) ⊂ (a) ⊆ (1) where the first inclusion is proper. Then p ∈ (a) so that p = ab for

some b ∈ R. But p is irreducible so that either a or b is a unit. If b is a unit, then bu = 1 for

some u ∈ R and hence pu = abu = a. This implies that a ∈ (p) and hence (a) ⊆ (p) contrary to

assumption. Therefore we must have a a unit, and hence (a) = R by proposition 2.2.6(3). This

shows that (p) is a maximal ideal.
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Theorem 2.4.8 If R is a PID and 0 6= p ∈ R, then (p) is a prime ideal if and only if p ∈ R is a

prime element.

Proof. If 0 6= (p) is a prime ideal, then (p) 6= R so that p is not a unit. If a, b ∈ R and p|ab, then

ab ∈ (p) so that either a ∈ (p) or b ∈ (p) and hence p|a or p|b. This shows that p is a prime element.

Conversely, if p is a prime element, then p is not a unit and hence (p) 6= R. If a, b ∈ R and ab ∈ (p),

then p|ab and hence p|a or p|b. It follows that a ∈ (p) or b ∈ (p) and hence (p) is a prime ideal.

Corollary 2.4.9 If R is a PID, then every irreducible element is prime.

Proof. If R is a PID and p is irreducible, then theorem (2.4.7) implies that (p) is a maximal ideal,

and hence (p) is a prime ideal by corollary (2.4.5). It then follows from theorem (2.4.8) that p is a

prime element.

This corollary patches a hole in our study of polynomial rings. Namely, recall that we gave no proof

of the following theorem (theorem (1.5.8)).

Theorem 2.4.10 Let p ∈ F [X] be an irreducible polynomial. If p divides the product rs with

r, s ∈ F [X], then p divides r or p divides s.

Proof. Note that if F is a field, then F [X] is a PIR by theorem 2.2.13, and F [X] is an integral

domain by problem #4 of homework #2. Therefore F [X] is a PID and we can apply the previous

corollary to the irreducible element f ∈ F [X] to conclude that f is a prime element.

We conclude this lecture with an interpretation of theorem (2.4.7) for polynomial rings.

Theorem 2.4.11 If F is a field and f ∈ F [X], then f is irreducible over F if and only if F [X]/(f)

is a field.

Proof. If f is irreducible, then (f) is maximal by theorem (2.4.7) and hence F [X]/(f) is a field by

theorem (2.4.2).

Conversely, if F [X]/(f) is a field, then (f) is a maximal ideal by (2.4.2) and hence f is irreducible,

again by theorem (2.4.7).

2.5 Manufacturing Roots of Polynomials

We have now developed enough machinery tackle the problem of finding roots for polynomials. As

we will see, if we are willing to “enlarge” the field of coefficients, we can always find a root for any
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non-constant polynomial. As you read this section, notice how much use we make of the evaluation

homomorphism. We begin by establishing the terminology commonly used in this business.

Definition 2.5.1 (Field extension) If E and F are fields with F ⊆ E, we say that E is an

extension of F . A sequence of extensions

F ⊆ E1 ⊆ · · · ⊆ En

is called a tower.

We leave it as an exercise for the reader to show that if E is an extension of F , then E is a vector

space over F . The dimension dimF (E) is called the degree of the extension and is written [E : F ].

If [E : F ] < ∞, then we say that E is a finite extension of F . We are ready for our first main

theorem. Before we give it, we caution the reader that we are going to do some things that, for the

purest, will be entirely beyond the pale. Specifically, if ϕ : F → E is an injective homomorphism

from one field into another, then we will often choose to identify F with its image ϕ(F ) ⊆ E, and

hence we will consider E to be an extension of F . There are some set theoretic dangers with such

shenanigans, but the economics gained are worth the risks. Of course, if the danger is acute, we will

avoid such identifications.

Theorem 2.5.2 If F is a field and f ∈ F [X] is a non-constant polynomial, then there exists an

extension field E of F and an element α ∈ E such that α is a root of f . That is, f(α) = 0.

Proof. Given a non-constant f ∈ F [X], theorem (1.5.10) implies that f is a product of irreducible

polynomials. If p is one such irreducible factor, and E ⊇ F is an extension of F with a root α for

p, then clearly α is also a root of f . Therefore we may assume that f ∈ F [X] is irreducible over

F . Now, theorem (2.4.2) implies that (f) is a maximal ideal so that E = F [X]/(f) is a field by

theorem (2.4.11). Let ϕ : F → E be the restriction of the quotient map F [X] → F [X]/(f) to the

constant polynomials. Then ϕ is a ring homomorphism since the restriction of a homomorphism to

a subring is a homomorphism. Now, if a ∈ F , then ϕ(a) = a+ (f) = (f) iff. a ∈ (f) iff. a = fg for

some g ∈ F [X]. But f is irreducible so that deg f ≥ 1 and hence deg(fg) ≥ 1 unless g = 0. But

deg a = 0 unless a = 0 so that we must have a = 0 and hence ϕ is injective. If we identify F with

its image ϕ(F ) ≤ E, then E is an extension of F .
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Now let α ∈ E be defined by α = X + (f). If f = a0 + a1X + · · ·+ anX
n, then we compute using

the evaluation homomorphism ϕα : F [X]→ E:

ϕα(f) = ϕα(a0 + a1X + · · ·+ anX
n)

= a0 + a1ϕα(X) + · · ·+ anϕα(X)n

= a0 + a1α+ · · ·+ anα
n

= a0 + a1(X + (f)) + · · ·+ an(X + (f))n

= a0 + (a1X + (f)) + · · ·+ (anXn + (f))

= (a0 + a1X + · · ·+ anX
n) + (f)

= f + (f)

= (f).

Therefore f ∈ kerϕα and hence α ∈ E is a root of f as desired.

Example 2.5.3 Let f = X2 + 1 ∈ R[X]. Then we have seen that R[X]/(f) ∼= C and the iso-

morphism is given explicitly by g + (f) 7→ g(i). In particular, we have X + (f) 7→ i so that the

construction in the previous theorem, when applied to R[X] and X2 + 1 produces the extension C

of R and the root i ∈ C.

Definition 2.5.4 (Algebraic and transcendental elements) If E is an extension field of a field

F , and element α ∈ E is called algebraic over F if kerϕα 6= 0 where ϕα : F [X] → E is the

evaluation homomorphism. If kerϕα = 0, then we say α is transcendental over F . If E = C and

F = Q, then an algebraic element α ∈ C over Q is called an algebraic number. Similarly we have

transcendental numbers.

In other words, α ∈ E is algebraic over F if α is the root of some non-zero polynomial f ∈ F [X].

Since F [X] is a PID (theorem 2.2.13), we know that kerϕα = (f) for some f ∈ F [X]. Moreover, the

proof of theorem (2.2.13) shows that we may assume that f is the smallest degree monic polynomial

in F [X] for which α is a root. If α ∈ E is transcendental over F , then ϕα : F [X] → E is injective

and hence an isomorphism onto its image in E. We summarize all of these ideas in the following

theorem.

Theorem 2.5.5 Let E be an extension field of a field F and let α ∈ E. Then α is transcendental

over F if and only if the evaluation homomorphism ϕα : F [X] → E is an isomorphism onto its
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image. If α is algebraic over F , then there exists a unique, monic irreducible polynomial p ∈ F [X]

such that kerϕα = (p).

Proof. First, as we have already remarked, α ∈ E is transcendental over F iff. kerϕα = 0 iff. ϕα

is injective iff. ϕα is an isomorphism onto its image in E. This proves the first statement of the

theorem.

Now, if α is algebraic, then we have also remarked that since F [X] is a PID, we have 0 6= kerϕα = (p)

for some monic p ∈ F [X] of minimal degree. Moreover, kerϕα 6= F [X] since F 6⊂ kerϕα so that

deg p ≥ 1. It remains to show that p is irreducible. If p = rs for some r, s ∈ F [X], then p(α) = 0

implies that r(α)s(α) = 0 so that either r(α) = 0 or s(α) = 0 since E is an integral domain (it

is a field). By the minimality of the degree of p, one of r or s must be a constant and hence p is

irreducible and the proof is complete.

Definition 2.5.6 (Irreducible polynomial for α) If E is an extension of F and α ∈ E is al-

gebraic over F , the irreducible polynomial for α over F is the unique monic polynomial p of

minimal degree satisfying p(α) = 0. We denote the irreducible polynomial for α over F by irr(α, F ).

The degree of irr(α, F ) is the degree of α over F and is denoted by deg(α, F ).

Example 2.5.7 If i =
√
−1 ∈ C, then clearly irr(i,R) = X2 + 1 since i is not a root of an linear

polynomial over R and X2 + 1 is monic. Therefore deg(i,R) = 2.

Let us try to summarize what we have done so far. If E is an extension field of a field F and α ∈ E,

we consider the evaluation homomorphism ϕα : F [X]→ E. We have two cases:

Algebraic case. If α ∈ E is algebraic over F , then the kernel of ϕα is the maximal (2.4.7) ideal

(irr(α, F )) in F [X] and hence F [X]/(irr(α, F )) is a field (2.4.2). The first isomorphism theorem

implies that this field is isomorphic to the image ϕα(F [X]) ≤ E, which we denote by F [α]. We leave

it as an exercise to show that the image F [α] = ϕα(F [X]) is the smallest subfield of E containing

F and α. We denote this field by F (α) and call it F adjoin α. Therefore if α ∈ E is algebraic over

F , F [α] = F (α).

Transcendental case. This time ϕα : F [X] → F [α] is an isomorphism (2.5.5) and hence F [α] is

not a subfield of E. It is a subring, and hence an integral domain. Now, theorem (1.3.4) implies

that E contains the field of fractions of F [α]. We leave it as an exercise to show that this field of

fractions is the smallest subfield of E containing F and α. That is, the field of fractions of F [α] is

F (α).
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Definition 2.5.8 (Simple extension) An extension E of F is simple if E = F (α) for some

α ∈ E.

We conclude this lecture with a theorem about the dimension of simple extensions F (α) in the case

that α is algebraic.

Theorem 2.5.9 Suppose E = F (α) is a simple extension of F with α ∈ E algebraic over F . If

deg(α, F ) = n, then [F (α) : F ] = n so that in particular, simple algebraic extensions are finite.

Proof. Let p = irr(α, F ). Since α is algebraic over F , we know F (α) = F [α] = imϕα. We

claim that (1, α, . . . , αn−1) is a basis for F [α] over F , and the result follows immediately. First, if

β ∈ F [α], then β = ϕα(g) for some g ∈ F [X]. Using the division algorithm, we write g = pq + r

where deg r < deg p or r = 0. This shows that β = ϕα(g) = ϕα(pq + r) = ϕα(r). If r = 0, then

β = 0 ∈ SpanF (1, α, . . . , αn−1). Otherwise we have r = a0 + a1X + · · ·+ an−1X
n−1 with all aj ∈ F

and hence

β = ϕα(r) = a0 + a1α+ · · ·+ an−1α
n−1

so that (1, α, . . . , αn−1) spans F [α]. Moreover, if

a0 + a1α+ · · ·+ an−1α
n−1 = 0

with all aj ∈ F , then f = a0 + a1X + · · ·+ an−1X
n−1 ∈ (p) so that f = 0 by the minimality of the

degree of p. This shows that (1, α, . . . , αn−1) is linearly independent over F and hence a basis for

F [α] over F .
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Chapter 3

Modules

3.1 Introduction to modules

This lecture introduces our next topic - modules. Loosely speaking, a module is like a vector space,

except that the scalars will only be assumed to come from a commutative ring. As we will see, this

will change some familiar results from linear algebra dramatically. From now on, R will always be

a commutative unital ring unless stated otherwise. Here is the main definition.

Definition 3.1.1 (R-module) If R is a commutative unital ring, an abelian group M (written

additively) is an R-module if we are given a function R×M →M denoted (r,m) 7→ rm satisfying

for all m,n ∈M , r, s ∈ R:

M1. 1m = m.

M2. r(m+ n) = rm+ rn.

M3. (r + s)m = rm+ sm.

M4. (rs)m = r(sm).

In particular, we note that the axioms M1-M4 are precisely the axioms for M to be a vector space

over R in the case that R is a field. In fact, we see at once that if R is a field, then an R-module M

is just a vector space over R.
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Example 3.1.2 Every ring R is an R-module under the map R×R→ R given by multiplication in

the ring. The axioms M1-M4 are readily verified (they are the ring axioms). This module is called

the regular R-module.

Example 3.1.3 If R is a ring and n ≥ 1 is an integer, the product group Rn is an R-module under

the map (r, (x1, . . . , xn)) 7→ (rx1, . . . , rxn). We leave the proof of this as an exercise.

One way to get started thinking about modules is to look for some over familiar rings. We have

remarked that modules over fields are vector spaces, so we know all about those. The “next” familiar

ring is the ring of integers Z. As we will see, we know all about Z-modules as well.

Theorem 3.1.4 Every abelian group M is a Z-module in a unique way.

Proof. Define Z ×M → M by (a,m) 7→ a · m. Then M1 is trivial, and M3 and M4 are the

laws of exponents in the abelian group M (written additively of course). Finally, M2 is the identity

(mn)a = mana which is valid in an abelian group. This shows that M is a Z-module. Furthermore,

since the module axioms are all exponent laws that must be valid in any abelian group, we see that

this module structure is unique.

We will make the last statement of the theorem more precise when we have defined the notion of

isomorphic R-modules.

OK, by now the notation (r,m) 7→ rm must be driving your group action sensors wild! It is no

accident! As we have remarked before, just as groups were meant to act on sets, rings were meant

to act as endomorphisms of abelian groups. We have looked at ideas like this two times now, so we

will leave the proof of the following theorem to you. Go do it!

Theorem 3.1.5 Let M be an abelian group and let R be a commutative unital ring. Then M is an

R-module if and only if there exists a unital ring homomorphism ρ : R→ End(M).

With this theorem at hand, we see that what we are doing is studying the representation theory of

(commutative unital) rings.

3.2 Module homomorphisms

Since a module is similar to a vector space in the sense that there is a ring of “scalars” that operates

on an abelian group, the reader can probably formulate his or her own definition of a module

homomorphism.
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Definition 3.2.1 (Module homomorphism) If R is a commutative unital ring, and M and N

are R-modules, then a mapping ϕ : M → N is an R-module homomorphism if for all x, y ∈ M

and all r ∈ R we have

1. ϕ(x+ y) = ϕ(x) + ϕ(y).

2. ϕ(rx) = rϕ(x).

That is, an R-module homomorphism is a homomorphism of abelian groups (1) that is compatible

with the action of R (2). Note that is R is a field (so that M and N are just vector spaces over

R), then an R-module homomorphism is what we have called a linear transformation. Similarly,

homomorphisms of Z-modules are simply homomorphisms of abelian groups.

Example 3.2.2 Consider the abelian group Z as a Z-module. The map f : Z → Z given by

f(n) = 2n is easily seen to be a Z-module homomorphism. Note that f is not a ring homomorphism.

Along with homomorphisms, the “sub-objects” in this business are called submodules. You can

guess that they are defined to subsets of the module, that are themselves modules under the same

operations. This amounts to requiring that we have a subgroup of M that is invariant under the

action of R. Here is the definition.

Definition 3.2.3 (Submodule) Let be a R commutative unital ring and let M be an R-module.

A subset N ⊆M of M is a submodule of M if

1. N is a subgroup of the group M .

2. rn ∈ N for all r ∈ R and all n ∈ N .

We often refer to condition (2) of the definition by saying that N is stable under R or that N is

R-invariant.

Example 3.2.4 1. If M is an R-module, then 0 and M are submodules called the trivial sub-

module and the improper submodule respectively.

2. The submodules of the regular module R are just the ideals of R.

3. The submodules of a Z-module M are just the subgroups of the abelian group M .
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Now, the rest of the lecture can be summed up in one sentence! Namely, all of the usual results

about homomorphisms, sub-objects and their interaction hold for R-modules. We will list the results

here, but we omit the proofs. You will be asked to supply the detailed proofs in your homework

exercises.

Theorem 3.2.5 Let be a R commutative unital ring, M and N be R-modules and let ϕ : M → N

be a R-module homomorphism.

1. If M ′ ≤M is a submodule, then ϕ(M ′) ≤ N is a submodule.

2. If N ′ ≤ N is a submodule, then ϕ−1(N ′) ≤M is a submodule.

3. The kernel kerϕ and image imϕ are submodules of M and N respectively where kerϕ denotes

the kernel of ϕ as a group homomorphism.

4. ϕ is injective iff. kerϕ = {0}.

Of course, an isomorphism of R-modules is a bijective module homomorphism. We say that two

R-modules M and N are isomorphic if there exists an isomorphism ϕ : M → N .

Theorem 3.2.6 Let R be a commutative unital ring and let M be an R-module. Then if N is a

submodule of M , the operation defined on the quotient group M/N defined by

r(x+N) = rx+N

is a well defined operation R×M/N →M/N making M/N into an R-module.

The module M/N is called the quotient module of M by N . The canonical map M → M/N is

a surjective R-module homomorphism with kernel equal to N .

Proposition 3.2.7 If K and N are submodules of an R-module M , then

1. K ∩N is a submodule of M .

2. The set K +N = {k + n : k ∈ K,n ∈ N} is a submodule of M .
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We say that K and N are independent if K ∩ N = 0. We say that K and M generate M if

K + N = M . We write M = K ⊕ N if K and N are independent and generate M . Note that in

this case, every element of M cam be written uniquely as a sum k + n with k ∈ K and m ∈M . cf.

Proposition 2.9.6 of the 150A notes.

Definition 3.2.8 (Simple module) A non-trivial R-module M is called simple if M and 0 are

the only submodules in M .

Lemma 3.2.9 (Lifting lemma) Suppose that M,N and M ′ are R-modules, ϕ : M → N and

π : M → M ′ are module homomorphisms and π is surjective. Then there exists a unique module

homomorphism ψ : M ′ → M such that ψ ◦ π = ϕ if and only if kerπ ⊆ kerϕ. Moreover, ψ is

surjective if and only if ϕ is surjective and ψ is injective if and only if kerπ = kerϕ.

Corollary 3.2.10 (First isomorphism theorem) If ϕ : M → N is an R-module homomorphism

and K = kerϕ, then M/K is isomorphic to imϕ as an R-module.

Corollary 3.2.11 (Second isomorphism theorem) Let M be an R-module and let K and N be

two submodules of M . Then K ∩N is a submodule of N , K is a submodule of K +N and

(K +N)/K ∼= N/(K ∩N).

Corollary 3.2.12 (Third isomorphism theorem) Let M be an R-module and let K and N be

two submodules of M such that K ≤ N ≤M . Then N/K is a submodule of M/K and

(M/K)/(N/K) ∼= M/N.

We conclude this lecture with a remark on logical efficiency. Theoretically, we could have developed

the notion of module as soon as we knew that End(M) is a ring for all abelian groups M . We

could have then stated and proved the lifting lemma and the isomorphism theorems for modules.

The same results for rings would then follow at once by applying the module results to the regular

R-module R. In fact, many of the notions we have looked at for rings can be defined for R-modules,

and the particular case of the regular module coincides with the ring theoretic notions. For example,

a ring R is simple iff. it is simple as the regular R-module and so on.
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3.3 Free modules and bases

We continue to assume that R is a commutative unital ring throughout this section. The reader

will no doubt agree that matrices play an invaluable role in linear algebra. The same is true for

the theory of R-modules for any commutative ring R (not just fields). In particular, one can go

back to the definition of a matrix over Q,R and C given in section 1.1.2 of the MAT 150A notes

(still online) and replace the entries with entries in any ring R. Such a matrix is called an R-

matrix. The definitions of matrix addition and multiplication are unchanged. Moreover the proof

of theorem 1.2.1 in the same section goes through for R-matrices unchanged. We can also take the

same definition of determinant for an n × n R-matrix. The same proof used over fields shows that

det(AB) = det(A) det(B) for n × n R-matrices A and B. Therefore A is invertible if and only if

detA = δ is a unit in the ring R.

Now, the concepts of spanning sets and independent sets transfer immediately to R-modules.

Namely, we have the following definition.

Definition 3.3.1 Let M be an R-module and let (m1, . . . ,mn) be an ordered set of elements of M .

Then an R-linear combination of the mi is an element m ∈M of the form

m = r1m1 + r2m2 + · · ·+ rnmn

where each ri ∈ R. The elements ri ∈ R are called the coefficients of the linear combination. If

S = (m1,m2, . . . ,mn) is an ordered set of vectors in M , the set of all linear combinations of the

vectors in S is called the span of S and is denoted RS. Therefore

RS = {m : m = r1m1 + r2m2 + · · ·+ rnmn, ri ∈ R}.

If S ⊂M and RS = M , then we say S generates M . If S is finite and generates M , we say that

M is finitely generated.

The reader should show that if S is any subset of an R-module M , then RS is always a submodule

of M . More generally, if I is any ideal in R, then IS is a submodule of M . Finally S is a submodule

of M iff. RS = S. (All nice exercises!) All of the modules that we will encounter will be finitely

generated. If R is a field so that an R-module M is just a vector space, then M is finitely generated

if and only if it is finite dimensional. Now we turn to independence. Again, the definition transfers

to R-modules without change.
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Definition 3.3.2 A subset S = {m1,m2, . . . ,mn} of an R-module M is called (linearly) inde-

pendent if the equation

r1m1 + r2m2 + · · ·+ rnmn = 0,

with ri ∈ R, implies that ri = 0 for all i = 1, 2, . . . , n. If S is not linearly independent, we say it is

dependent.

Definition 3.3.3 (Basis) If M is an R-module, a subset S ⊆M is called a basis if S is a linearly

independent spanning set.

Example 3.3.4 The “standard basis” (e1, . . . , ek) is easily seen to be a basis for the module Rn.

Just as with vector spaces, if (m1, . . . ,mn) is a basis for an R-module M , then every element m ∈M

can be written as an R-linear combination of the mi in a unique way. One place we we see that the

theory of arbitrary R-modules differs dramatically from vector spaces, is that not every R-module

will have a basis. In fact, “most” R-modules will not have a basis if R is not a field.

Definition 3.3.5 (Free module) A finitely generated R-module M is free if there exists an R-

module isomorphism ϕ : Rn → M for some n ∈ N. The integer n is called the rank of the free

module M . To avoid some pathology in the future, we say that the trivial module 0 is free of rank 0

and the empty set ∅ is a basis.

Proposition 3.3.6 A finitely generated R-module M has a basis if and only if it is free.

Proof. Let B = (m1, . . . ,mn) denote an ordered set of elements of M and define a map ψ : Rn →M

by

ψ(X) = BX = (m1, . . . ,mn)


x1

...

xn

 = x1m1 + · · ·+ xnmn.

This map is easily seen to be an R-module homomorphism. Moreover, ψ is surjective iff. B generates

M and ψ is injective iff. B is independent. Therefore B is a basis for M iff. ψ : Rn → M is an

isomorphism iff. M is free.

Example 3.3.7 The proposition shows that a free Z-module is isomorphic to the Z-module Zn for

some n. Therefore every free Z-module is infinite. It follows that no finite Z-module (finite abelian

group) is free. So we see at last an example of a finitely generated module that is not free, any finite

abelian group will do!
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Definition 3.3.8 An R-module M is cyclic if it is generated by a single element. That is, M =

Rx = {rx : r ∈ R} for some x ∈ M . If N is any R-module and x ∈ N , then Rx ≤ N is the cyclic

submodule generated by x.

Proposition 3.3.9 If F is a free R-module with basis (x1, . . . , xn), then F = Rx1 ⊕ · · · ⊕Rxn.

Proof. We know that Rxi ∩ (Rx1 + · · ·Rxi−1 + Rxi+1 + · · · + Rxn) = 0 since (x1, . . . , xn) is

independent. Moreover, Rx1 + · · · + Rxn = F since (x1, . . . , xn) generates F . Therefore F =

Rx1 ⊕ · · · ⊕Rxn.

It is a surprising fact that for some rings, the cyclic submodule Rx for x ∈M is not free even if M

is free of rank 1! This is not the case for PIDs, as the following proposition shows. We will use this

lemma later on as a base step for an induction.

Proposition 3.3.10 If R is a PID and M is a free R-module of rank 1, then every non-zero

submodule of M is free of rank 1.

Proof. By hypothesis, there exists x ∈ M such that the map ψ : R → M given by ψ(r) = rx is

an isomorphism. Let 0 6= N ≤ M be a non zero submodule of M so that ψ−1(N) is a non zero

submodule of R. That is, ψ−1(N) is a non zero ideal of R, and hence ψ−1(N) = (a) for some

0 6= a ∈ R since R is a PID. Therefore

N = ψ((a)) = {rax : r ∈ R}.

Therefore the map ϕ : R → N given by ϕ(r) = rax is an onto homomorphism of R-modules.

Moreover, ϕ(r) = 0 iff. rax = 0 iff. ψ(ra) = 0 iff. ra = 0 since ψ is injective. But R is an integral

domain and a 6= 0 so that we must have r = 0 and hence ϕ is injective as well. This shows that

ϕ : R→ N is an isomorphism of R-modules and hence N is free of rank 1 by definition.

We remark here that, just as for vector spaces, R-homomorphisms M → N of free R-modules M

and N can be given by multiplication by R-matrices once basis are chosen. Moreover, change of

basis matrices work just as they do for vector spaces, and a change of a basis matrix is necessarily

invertible. These ideas are discussed in detail on page 455 in Artin’s text. We will make little use

of these facts, so we do not expound on them here.

We can now state the main goal of the current chapter: We want to classify all finitely generated

modules M over a PID R. To put the problem in perspective, consider the case that R is a field

so that an R-module is a vector space over R. Since every finitely generated vector space has a
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basis (see Lemma 3.3.11 of the 150A notes), every finitely generated vector space is free. Moreover,

Theorem 3.3.14 of the 150A notes implies that any two vector spaces over R of the same dimension

are isomorphic. Therefore, if R is a field, we see that every finitely generated R-module is isomorphic

to Rn, and thus we have classified finitely generated modules over fields. We want to do the same

thing for PIDs. We already know that not every R-module is free, so the answer will be different.

However, since a change of basis matrix is invertible, any two free R-modules of the same rank n

are isomorphic. We end this lecture with an important general fact about free modules as well as

the first step toward the structure theorem we desire.

Theorem 3.3.11 If M is an R-module and x1, . . . , xn ∈M , then there is a unique homomorphism

ϕ : Rn →M with ϕ(ei) = xi for all i. In particular, if M is generated by the xi, ϕ is surjective.

Proof. Let x1, . . . , xn ∈M and define ϕ : Rn →M by

ϕ : (r1, . . . , rn) 7→ r1x1 + · · ·+ rnxn.

Then the reader can check that ϕ is a R-module homomorphism and that ϕ(ei) = xi for all i. If

ψ : Rn →M also satisfies ψ(ei) = xi, then for all r =
∑
rie1 ∈ Rn, we have

ψ(r) =
n∑
i=1

riψ(ei) =
n∑
i=1

rixi =
n∑
i=1

riϕ(ei) = ϕ(r)

and hence ϕ = ψ is unique. Finally, if the xi generate M , then every x ∈M has the form x =
∑
rixi

so that if r =
∑
riei we see that ϕ(r) = x and hence ϕ is surjective.

The theorem implies that every finitely generated R-module M is the image of a free module of

finite rank.

Theorem 3.3.12 Let R be a PID and let F be a free R-module of rank n. Then if G ≤ F is a

submodule of F , then G is free of rank m with m ≤ n.

Proof. Let (x1, . . . , xn) be a basis for F and for each 1 ≤ k ≤ n, let Fk = SpanR(x1, . . . , xk) and

Gk = G ∩ Fk. By induction, we will prove that each Gk is free of rank less than or equal to k. If

G1 = 0, then G1 is free of rank 0. If G1 6= 0, then G1 is a submodule of Rx1 and hence G1 is free of

rank 1 by proposition (3.3.10). Let k > 1 and suppose that Gk−1 is free of rank less than or equal

to k − 1. If Gk = Gk−1, then we are done. Otherwise let

I = {b ∈ R : there exists x′ ∈ Fk−1 and x′ + bxk ∈ Gk}.
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If π′k : F → Rxk is the usual coordinate projection restricted to Gk, then I = {b ∈ R : bxk ∈ imπ′k}.

Therefore I is an ideal in R, say I = (a). Since Gk 6= Gk−1, we must have a 6= 0. Therefore there is

some y ∈ Gk and y′ ∈ Fk−1 with y = y′ + axk. We claim that Gk = Gk−1 ⊕Ry.

Let z ∈ Gk. Then there exist z′ ∈ Fk−1 and c ∈ R with z = z′ + cxk. Therefore c ∈ (a) and hence

c = ad for some d ∈ R. This means that z − dy = z′ − dy′ ∈ Gk−1 and hence Gk = Gk−1 + Ry.

Now, ry ∈ Gk−1 ⊆ Fk−1 iff. raxk = 0 iff. ra = 0 iff. r = 0. Therefore Gk−1 ∩ Ry = 0 and hence

Gk = Gk−1 ⊕ Ry. By induction, Gk−1 is free of rank less than or equal to k − 1 so that Gk is free

of rank less than or equal to k.

Corollary 3.3.13 If R is a PID and M is an R-module generated by m elements, then if N is a

submodule of M , N is generated by less than or equal to m elements.

Proof. Suppose that M is generated by m elements and take a surjective homomorphism ϕ : Rm →

M (theorem (3.3.11). Now, ϕ−1(N) is a submodule of the free module Rm by theorem 3.2.5 so that

ϕ−1(N) is free of rank n ≤ m by theorem (3.3.12). If (y1, . . . , yn) is a basis for ϕ−1(N), then easily

(ϕ(y1), . . . , ϕ(yn)) is a generating set for N and hence N is generated by less than or equal to m

elements.

3.4 Some odds and ends about PIDs

In this lecture, we list and prove some useful facts about PIDs that we will need in our classification

theorem. We could have covered this material before we began studying modules. Until further

notice, let R be a PID.

Definition 3.4.1 If R is a commutative unital ring and a1, . . . , an ∈ R, a greatest common

divisor (GCD) of the ai is an element d ∈ R such that d|ai for all i and if e ∈ R is another

element satisfying e|ai for all i, then e|d. A least common multiple (LCM) of the ai is an

element m ∈ R such that ai|m for all i and if n ∈ R is another element in R with ai|n for all i,

then m|n. We say that the elements a1, . . . , an are relatively prime if the GCD of the ai is 1.

Before we state the following proposition, we recall that for a commutative ring R and a, b ∈ R,

a ∈ (b) if and only if b|a.

Proposition 3.4.2 Let R be a PID and let a1, . . . , an ∈ R.
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1. The generator of the ideal (a1, . . . , an) is a GCD of the ai.

2. The generator of the ideal (a1) ∩ · · · ∩ (an) is a LCM of the ai.

3. If d and d′ are GCDs of the ai, then d = d′u for some unit u ∈ R.

4. If m and m′ are LCMs of the ai, then m = m′u for some unit u ∈ R.

5. (a1, . . . , an) = (d) if and only if d is a GCD of the ai.

6. (a1, . . . , an) = R if and only if the ai are relatively prime.

7. If a, b ∈ R are relatively prime and (b) ⊆ (a), then (a) = R.

Proof.

1 Since R is a PID, we know (a1, . . . , an) = (d) for some d ∈ R. Now, each ai ∈ (a1, . . . , an) and

hence each ai ∈ (d) so that d|ai for all i. If e ∈ R and e|ai for all i, then ai = eri for some

ri ∈ R for all i. Now, d ∈ (a1, . . . , an) so that d = s1a1 + · · ·+ snan for some si ∈ R and hence

d = s1a1 + · · ·+ snan = s1r1e+ · · ·+ snrne = (s1r1 + · · ·+ snrn)e,

so that e|d. This shows that d is a GCD of the ai.

2 Again, R is a PID so that the ideal (a1) ∩ · · · ∩ (an) = (m) is principle generated by m for

some m ∈ R. Moreover, m ∈ (ai) for all i so that ai|m for all i. Now, if ai|n for all i, then for

all i we have n = airi for some ri ∈ R and hence n ∈ (a1) ∩ · · · ∩ (an) = (m). It follows that

n ∈ (m) and hence m|n. This shows that m is a LCM of the ai.

3 If d and d′ are GCDs of the ai, then d|d′ and d′|d. Therefore d′ ∈ (d) and d ∈ (d′) so that

(d) = (d′). It follows (from you midterm exam problem) that d = d′u for some unit u ∈ R.

4 Proceed as in (3).

5 If (d) = (a1, . . . , an), then d is a GCD of the ai by (1). Now let d′ be any GCD of the ai. Then

by (3), d′ = du for some unit u ∈ R and hence (d′) = (du) = (d). Therefore d′ = (a1, . . . , an).

6 This is immediate: the ai are relatively prime iff. the GCD is 1 iff. (a1, . . . , an) = (1) = R.

7 If a and b are relatively prime, then by (6), we have 1 = ax + by for some x, y ∈ R. Since

(b) ⊆ (a), ax, by ∈ (a) and hence (1) ∈ (a) so that (a) = R.
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Now, since R is commutative, it is easy to see that (a1, . . . , an) = (a1) + · · ·+ (an) so that we have

the following corollary.

Corollary 3.4.3 If R is a PID and a1, . . . , an ∈ R, then

(a1) ∩ · · · ∩ (an) ⊆ (a1) + · · ·+ (an).

Proof. We know that if m and d are an LCM and GCD for the ai respectively, then (a1)∩· · ·∩(an) =

(m) and (a1, . . . , an) = (d). Now, d|ai for all i and ai|m for all i so that d|m and hence m ∈ (d) so

that (m) ⊆ (d).

Now, if we let a = a1 · · · an be the product of all the ai, then ai|a for all i and hence m|a. This

implies that a ∈ (m) and hence (a) ⊆ (m). This proves the following corollary.

Corollary 3.4.4 If R is a PID and a1, . . . , an ∈ R, then

(a1 · · · an) ⊆ (a1) ∩ · · · ∩ (an).

We do not want to go into the details here, but for completeness, we remark that one can show that

every PID has the unique factorization into products of irreducible elements (such as the integers Z

and polynomials F [X] over a field). Such rings are called Unique factorization domains (UFD).

Every PID is a UFD. Using this, it is not hard to show that the inclusion in the previous corollary

is an equality if and only if the ai are relatively prime. Let use briefly sketch the details for the case

n = 2, and leave the general (induction) proof to the reader.

Lemma 3.4.5 If R is a UFD and a, b ∈ R are relatively prime, then (ab) = (a) ∩ (b).

Proof. Since R is a UFD, there are irreducible elements p1, . . . , pn ∈ R and natural numbers

e1, . . . , en, f1, . . . , fn ≥ 0 such that

a = pe11 · · · penn and b = pf1
1 · · · pfnn .

If we let αi = min(ei, fi) and βi = max(ei, fi) for all i, then the reader can easily show that

d = pα1
1 · · · pαnn
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is a GCD for a and b and

m = pβ1
1 · · · pβnn

is an LCM for the ai. Moreover, since (trivially) αi + βi = ei + fi for all i, we see that ab = dm. If

a and b are relatively prime, then d is a unit and hence (m) = (ab). The result now follows.

Since every PID is a UFD, lemma (3.4.5) is valid for any PID R.

3.5 Torsion modules and order ideals

Recall that our present goal is to classify all finitely generated modules over a PID. We have remarked

that not all such modules are free, so the situation is more complicated than that of modules over

a field (vector spaces). As a first step in our classification, we will see that every finitely generated

module M over a PID R does have a (possibly 0) direct summand which is free. The complementary

summand consists of elements of “finite order”. More precisely, we make the following definition.

Definition 3.5.1 An R-module M is torsion free if for all x ∈ M and all a ∈ R, ax = 0 implies

either a = 0 or x = 0.

Note that any (finitely generated) free module over an integral domain is torsion free. This follows

since if M is finitely generated and free, then M ∼= Rn so that x ∈M has the form (r1, . . . , rn) ∈ Rn.

Now, if R is an integral domain, then ari = 0 implies that a = 0 or ri = 0. But ax = 0 iff. ari = 0

for all i so that we see that either a = 0 or ri = 0 for all i and hence x = 0. The converse of this

fact is only partially true.

Proposition 3.5.2 If R is a PID, then a finitely generated R-module M is free if and only if M is

torsion free.

Proof. We have just remarked that a finitely generated free module over an integral domain is

torsion free. For the converse, assume that 0 6= M is torsion free. (If M = 0, then it is trivially free.)

Let {x1, . . . , xn} be a generating set for M so that M = Rx1 + · · · + Rxn and each xi 6= 0. Since

M is torsion free, if 0 6= x ∈ M , then {x} is independent so that Rx is free of rank 1. If we choose

a maximal independent subset from {x1, . . . , xn}, say {x1, . . . , xm} (re-enumerating if necessary),

then the submodule

F = Rx1 ⊕ · · · ⊕Rxm
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is free of rank m since each Rxi is free of rank 1 and the xi are independent.

Now, for each i > m, since {x1, . . . , xm} is maximal independent, there exists a non-zero element

ai ∈ R with aixi ∈ F . Let a = am+1am+2 · · · an and note that ax ∈ F for all x ∈ M (homework

exercise). Now, R is an integral domain so that a 6= 0. Therefore, since M is torsion free, the

map λa : M → F given by λa(x) = ax is injective and hence an isomorphism onto its image

imλa = aM = {ax : x ∈ M}. But λa is a R-module homomorphism (homework exercise) so that

aM is a submodule of the finitely generated free module F . Therefore theorem (3.3.12) implies that

aM is finitely generated and free. But aM ∼= M so that M is finitely generated and free.

Now let M be any R-module and let x ∈ M . The map R → M defined by a 7→ ax is an R-module

homomorphism. Its image is the cyclic module generated by x. Define the order ideal Ox of x to

be the set

Ox = {a ∈ R : ax = 0}.

Note the order ideal of x is just the kernel of the map a 7→ ax and hence it is an an ideal. If R is a

PID and x ∈ M has a non zero order ideal, then 0 6= Ox = (a) for some non zero a ∈ R which is

unique up to multiplication by a unit. We call a the order of x ∈M .

Definition 3.5.3 If M is an R-module, an element x ∈M is torsion if Ox 6= 0. We let

Mt = {x ∈M : x is torsion}.

A module M is a torsion module if M = Mt.

We note that a module is torsion free iff. Mt = 0. This is because M is torsion free iff. 0 6= a ∈ R

and 0 6= x ∈M implies ax 6= 0 iff. 0 6= x implies Ox = 0 iff. 0 ∈M is the only torsion element.

Lemma 3.5.4 For every R module M , Mt is a submodule of M that is a torsion module. Moreover,

the quotient M/Mt is torsion free.

Proof. Suppose that x, y ∈ Mt and 0 6= a, b ∈ R satisfy ax = by = 0. Since R is a PID, we

have ab 6= 0. Moreover, ab(x + y) = abx + aby = 0 + 0 = 0 so that x + y ∈ Mt. Also, for all

r ∈ R, a(rx) = (ar)x = (ra)x = r(ax) = r0 = 0 so that rx ∈ Mt as well. This shows that Mt is a

submodule of M . By definition, each element of Mt is torsion so that (Mt)t = Mt and hence Mt is a

torsion module. Finally, suppose that x+Mt ∈M/Mt and 0 6= a ∈ R satisfies ax+Mt = Mt. Then

ax ∈ Mt so that b(ax) = 0 for some 0 6= b ∈ R. Now, R is a PID so that ab 6= 0 and (ab)x = 0 so
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that x ∈ Mt. This shows that Mt is the only torsion element of M/Mt and hence M/Mt is torsion

free.

Not surprisingly, we call Mt the torsion submodule of M . We can now take the next step in out

classification.

Theorem 3.5.5 If M is a finitely generated module over a PID and Mt is the torsion submodule

of M , then there is a finitely generated free submodule Mf ≤M such that

M = Mt ⊕Mf .

That is, every finitely generated module over a PID is a direct sum of a torsion module and a free

module of finite rank.

Proof. Let Mt be the torsion submodule and let π : M → M/Mt be the quotient map. By lemma

(3.5.4), M/Mt is torsion free. Since M is finitely generated, M/Mt is finitely generated and hence

M/Mt is free by proposition (3.5.2). This means that we can choose a basis

(x1 +Mt, x2 +Mt, . . . , xm +Mt)

for M/Mt. We can then define a R-module homomorphism ψ : M/Mt →M by defining ψ(xi+Mt) =

xi for 1 ≤ i ≤ m and extending linearly (theorem 3.3.11). Then clearly π ◦ ψ = 1M/Mt
so that ψ

is injective. If we let Mf = imψ, then Mf is a submodule of M and ψ : M/Mt → Mf is an

isomorphism. It follows that Mf is finitely generated and free.

We claim that M = Mt ⊕Mf . If x ∈ Mt ∩Mf , then π(x) = Mt and x = ψ(y + Mt) for some

y =
∑m
i=1 aixi with ai ∈ R. But

Mt = π(x) = π(ψ(y +Mt)) = y +Mt

so that y ∈ Mt. But (x1 + Mt, x2 + Mt, . . . , xm + Mt) is a basis in M/Mt so that we must have

ai = 0 for all i and hence y = 0 so that x = 0. This shows that Mt ∩Mf = 0.

Finally, if x ∈ M , then π(x) =
∑
aixi +Mt. Let f =

∑
aixi so that f ∈ imψ = Mf . Moreover, if

t = x− f , then

π(t) = π(x)− π(f) = π(x)− π
(
ψ
(∑

aixi +Mt

))
= π(x)− (

∑
aixi +Mt) = π(x)− π(x) = 0

and hence t ∈ kerπ = Mt. Clearly x = t+ f and hence M = Mt +Mf and the proof is complete.
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Why is this the first step in our classification? We know that a finitely generated free R-module is

isomorphic to Rn where n is the rank of the module. Just as for vector spaces, any two free modules

of the same rank are isomorphic. (We alluded earlier to change of basis matrices which are still valid

over commutative rings. These are the desired isomorphisms between two R-modules of a given

rank.) Therefore finite rank free modules are classified by their rank. Having this in our hands, the

previous theorem implies that we can complete out classification of finitely generated modules over

PIDs if we can classify all finitely generated torsion modules over a PID. This is what we now set

out to do.

3.6 Structure theorem for finitely generated modules over

PIDs

Let R be a PID and let P be a complete set of representatives of all prime elements of R. (That is,

we consider two primes p, p′ in R to be equivalent if p = p′u for some unit. This is an equivalence

relation on the set of all prime elements (nice exercise) and we choose one prime from each class.

For the ring Z, this amounts to choosing say the positive primes. In F [X], we choose irreducible

monic polynomials.) For each prime p ∈ P and each R-module M , we let

M(p) = {x ∈M : Ox = (pn) for some n ≥ 0}.

That is, M(p) is the set of all elements of M that have order a power of p.

Lemma 3.6.1 M(p) is a submodule of M for all primes p ∈ P.

Proof. Exercise.

The following decomposition theorem holds for arbitrary torsion modules, not just finitely generated

ones.

Lemma 3.6.2 If R is a PID and M is a torsion module over R, then

M =
⊕
p∈P

M(p).

Proof. Let 0 6= x ∈ M . Since 1x = x, Ox 6= R. But R is a PID so that Ox = (a) for some

0 6= a ∈ R. (We know a 6= 0 since M is a torsion module.) Now, (a) 6= R so that a is not a unit and

hence we can write

a = pe11 · · · penn
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where pi is irreducible for each i. (This is because R is a PID and hence a UFD). Since R is a PID,

corollary 2.4.9 implies that each pi is a prime. For each i = 1, . . . , n, let

qi = pe11 · · · p
ei−1
i−i p

ei+1
i+1 · · · p

en
n

so that a = qip
ei
i . Now, since ax = 0, we have qix ∈ M(pi) for all i. Moreover, we leave it as an

exercise to show that {q1, . . . , qn} are relatively prime. Using this, we can write

1 = r1q1 + · · ·+ rnqn

for some ri ∈ R and hence

x = 1x = r1q1x+ · · ·+ rnqnx ∈M(p1) + · · ·+M(pn).

This shows that the M(p), p ∈ P, generate M .

Now suppose that p1, . . . , pn, q ∈ P are distinct and that

x ∈ (M(p1) + · · ·+M(pn)) ∩M(q).

Since x ∈ M(q), then Ox = (qm) for some m ≥ 0. Also, since x ∈ M(p1) + · · · + M(pn), x =

r1x1 + · · ·+ rnxn where ri ∈ R and there exist ei ≥ 0 such that peii xi = 0 for all i. If we let

a = pe11 · · · penn ,

then clearly ax = 0 so that a ∈ (qm) and hence (a) ⊆ (qm). Since the p1, . . . , pn, q ∈ P are distinct

primes, they are relatively prime and hence a and qm are relatively prime. By proposition 3.4.2(7),

this means that (qm) = R and hence Ox = R so that x = 0. Therefore the M(p) are independent

and the proof is complete.

If we combine theorem (3.5.5) and lemma (3.6.2), then we see that if M is a finitely generated

module over a PID R, then

M =

⊕
p∈P

M(p)

⊕Mf

where P is a complete set of all primes in R and Mf is a free module over R of finite rank. Therefore,

to complete our classification, we need only classify finitely generated torsion modules of the form

M(p). That is, finitely generated modules M with the property that pnx = 0 for all x ∈M for some

prime p ∈ R and n ∈ N.

For such a module M , given x ∈M , we have Ox = (a) for some a ∈ R. But pnx = 0 so that pn ∈ (a)

and hence a|pn. But since p ∈ R is prime, this implies that a = pr for some 0 ≤ r ≤ n. The element
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pr is called the order of x. Note that if pr is the order of x, then prx = 0 but pr−1x 6= 0. Also pr

is the order of x if and only R/(pr) ∼= Rx.

Definition 3.6.3 Let M be a finitely generated module with pnM = 0 for some p ∈ P and some

n ∈ N. The socle of M is

Soc(M) = {x ∈M : px = 0}.

We leave it as an exercise for the reader to show that Soc(M) is a submodule of M .

Lemma 3.6.4 If M is a finitely generated module with pnM = 0 for some p ∈ P and some n ∈ N

and M = M1 ⊕M2, then Soc(M) = Soc(M1)⊕ Soc(M2).

Proof. Let x ∈ Soc(M) so that px = 0. Since M = M1⊕M2, there exist unique y ∈M1 and z ∈M2

with x = y + z. Now, 0 = px = py + pz and py ∈ M1 and pz ∈ M2. It follows that py = pz = 0 by

uniqueness so that y ∈ Soc(M1) and z ∈ Soc(M2) so that Soc(M) = Soc(M1) + Soc(M2).

Now, for any module M , Soc(M) ⊂M so that if x ∈ Soc(M1)∩Soc(M2), then x ∈M1 ∩M2 so that

x = 0. Therefore Soc(M1) and Soc(M2) are independent and the proof is complete.

Lemma 3.6.5 If M is a finitely generated module with pnM = 0 for some p ∈ P and some n ∈ N,

then Soc(M) is a R/(p)-module via the operation

(a+ (p), x) 7→ ax.

Proof. First, if x ∈ Soc(M), then px = 0 so that for all a ∈ R, p(ax) = a(px) = a0 = 0 and hence

ax ∈ Soc(M). The map defined in the statement of the lemma clearly satisfies the module axioms

provided it is well defined. If a+(p) = b+(p), then a−b ∈ (p) so that ax−bx = (a−b)x = pkx = 0.

Therefore the map is well defined and Soc(M) is a module over R/(p).

Now, R is a PID so that the prime element p is irreducible and hence (p) is a maximal ideal. It follows

that R/(p) is a field and hence Soc(M) is a vector space over R/(p). Since Soc(M) is a submodule

of M , and M is finitely generated, corollary (3.3.13) implies that Soc(M) is finitely generated as an

R-module and hence as an R/(p)-module. We have shown the following important fact:

Soc(M) is a finite dimensional vector space over the field R/(p).

Definition 3.6.6 If M is an R-module, the elements y1, . . . , ym are weakly independent if

r1y1 + · · ·+ rmym = 0

implies that riyi = 0 for all i.
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Lemma 3.6.7 If M is an R-module and y1, . . . , ym are weakly independent, then R{y1, . . . , ym} =

Ry1 ⊕ · · · ⊕Rym.

Proof. We have R{y1, . . . , ym} = Ry1 + · · ·+Rym by definition. If

x ∈ Ryi ∩ (Ry1 + · · ·+Ryi−1 +Ri+1yi+1 + · · ·+Rym),

then there exist elements aj ∈ R, 1 ≤ j ≤ m with

aiyi = a1y1 + · · ·+ ai−1yi−1 + ai+1yi+1 + · · ·+ amym

and hence

a1y1 + · · · − aiyi + · · ·+ amym = 0.

Therefore ajyj = 0 for all j since the yj are weakly independent and hence x = aiyi = 0.

OK, we need one more technical lemma before we can give our next big step in the decomposition

theorem. I know it is easy to feel fatigued by now, but stick with me - it will all pay off!

Lemma 3.6.8 Suppose that M is a torsion module with pnM = 0 and pn−1M 6= 0 for some n ≥ 1.

Let 0 6= x ∈ M with pn−1x 6= 0 and let M = M/Rx. Let y1, . . . , ym ∈ M be weakly independent

elements of M . Then for each i, there exists a representative yi of yi such that yi has the same

order as yi. Moreover, the elements x, y1, . . . , ym are weakly independent.

Proof. If M = 0, there is nothing to prove, so let y ∈ M have order pe for some e ≥ 1. If y is a

representative of y in M , then pey ∈ Rx and hence pey = ax for some a ∈ R. Since p is a prime, we

can write a = psc where p 6 | c. If s ≥ n, then pey = 0 so that the order of y is also pe (if pry = 0

for some r < e, then pry = 0, a contradiction). If s < n, then pscx has order pn−s and hence y has

order pe+n−s. We must have e+ n− s ≤ n (why?) and hence e ≤ s. Moreover, the element

y − ps−ecx

has order pe and

y − (y − ps−ecx) = ps−ecx ∈ Rx

so that y − ps−ecx also represents y. We have shown that if y ∈ M , we can find a representative

y ∈M of y with the same order as y. Therefore, for each i = 1, . . . ,m, we can choose a representative

yi of yi with the same order as yi.
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We will now show that x, y1, . . . , ym are weakly independent. Suppose that a, a1, . . . , am ∈ R and

ax+ a1y1 + · · ·+ amym = 0.

Therefore in the quotient M , we have

a1y1 + · · ·+ amym = 0.

But the yi are weakly independent so that aiyi = 0 for all i. If pei is the order of yi, then aiyi = 0

implies ai ∈ (pei) and hence pei divides ai. That is, ai = peiki for all i with ki ∈ R. Now

aiyi = peikiyi = 0 since pei is also the order of yi. This in turn implies that ax = 0 and hence

x, y1, . . . , ym are weakly independent as desired.

We now have the machinery in place to prove the next step in out decomposition. Recall that we

are working on modules M over PIDs with the property that pnM = 0 and pn−1M 6= 0 for some

prime p ∈ R.

Lemma 3.6.9 If M is a finitely generated module with pnM = 0 for some p ∈ P and some n ∈ N,

then there exist unique natural numbers

n1 ≥ n2 ≥ · · · ≥ nk ≥ 1

and

M ∼= R/(pn1)⊕ · · · ⊕R/(pnk).

Proof. We will induct on d = dimR/(p)(Soc(M)), the case d = 0 being trivial. Given 0 6= x ∈M , the

remarks before definition (3.6.3) imply that the order of x has the form pr with 1 ≤ r ≤ n. Pick 0 6=

x1 ∈M so that the order of x1 is pn1 , with n1 maximal. Note that n1 is uniquely determined by M .

Let M = M/Rx1 denote the quotient module. Since M is finitely generated, M is finitely generated.

Moreover, pnM = 0 implies pnM = 0. We claim that dimR/(p)(Soc(M)) < dimR/(p)(Soc(M)). To

show this suppose that y1, . . . , ym ∈ Soc(M) is a basis for Soc(M) over R/(p). We claim that the

yi are weakly independent over R. For suppose that

a1y1 + · · · amym = 0 = Rx1.

Then

(a1 + (p))y1 + · · · (am + (p))ym = 0
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which implies that ai ∈ (p) for all i because the yi are linearly independent over R/(p). Therefore,

for all i, ai = pki for some ki ∈ R and hence

aiyi = kipyi = 0

for all i since yi ∈ Soc(M). This shows that the yi are weakly independent over R, establishing our

claim. Now pn1−1x1 6= 0 and clearly pn1−1x1 ∈ Soc(M) so that we have an element x′ = pn1−1x1 ∈

Rx1∩Soc(M). Now, lemma (3.6.8) implies that we can find representatives yi ∈M for each yi with

the same order (respectively). That is yi ∈ Soc(M) for each 1 ≤ i ≤ m. Moreover, the same lemma

(3.6.8) implies that the set x′, y1, . . . , ym is weakly independent over R. We leave it as an exercise

for the reader to show that this implies that x′, y1, . . . , ym are linearly independent over R/(p) and

hence dimR/(p)(Soc(M)) ≥ m+ 1 so that dimR/(p)(Soc(M)) < dimR/(p)(Soc(M)) as claimed. Now,

by induction, there exist unique natural numbers n2 ≥ · · · ≥ nk ≥ 1 with

M ∼= R/(pn2)⊕ · · · ⊕R/(pnk).

For each i = 2, . . . , k, we have R/(pni) ∼= Rxi for some xi ∈ M . Therefore the order of xi is

pni and the xi are weakly independent by lemma (3.6.7). Therefore, by lemma (3.6.8), there are

representatives x2, . . . , xk ∈M with the same orders pni (respectively) and x1, x2, . . . , xk are weakly

independent. Therefore lemma (3.6.7) implies that

R{x1, . . . , xk} = Rx1 ⊕ · · · ⊕Rxk.

But given x ∈ M , we know x ∈ M is a R-linear combination of x2, . . . , xk. Say x =
∑m
j=2 rjxj .

Then if y =
∑m
j=2 rjxj , it is easy to see that x− y ∈ ker(M → M) = Rx1 so that x− y = r1x1 for

some r1 ∈ R and hence x1, . . . , xk generate M . Therefore

M = Rx1 ⊕ · · · ⊕Rxk.

Also, we know n1 is unique and n1 ≥ n2 by the maximality of n1 so that

n1 ≥ n2 ≥ · · · ≥ nk ≥ 1.

Finally, since the order of xi is pni , we have Rxi ∼= R/(pni) so that, finally,

M ∼= R/(pn1)⊕ · · · ⊕R/(pnk).
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This brings us to our first major characterization of finitely generated modules over a PID R. The

statement of those theorem may seem a bit overwhelming, but we have already done all of the work

to prove it, so the proof will be a nice recap of the material above.

Theorem 3.6.10 If M is a finitely generated module over a PID R, then there exist unique primes

p1, . . . , pm ∈ P and for each such prime pi there exist unique natural numbers

ni1 ≥ ni2 ≥ · · · ≥ niki ≥ 1

and there is a unique integer r ≥ 0 such that

M ∼= Mf ⊕

 m⊕
i=1

 ki⊕
j=1

R/(pniji )


where Mf ≤M is free of rank r.

Proof. Given M , we know by theorem (3.5.5) that

M = Mf ⊕Mt

where Mf is a free module of rank r for some unique r ≥ 0 and Mt is the torsion submodule of M .

Moreover, lemma (3.6.2) implies that we have

Mt =
⊕
p∈P

Mt(p).

Since M is finitely generated, Mt is finitely generated by corollary (3.3.13). Therefore Mt(p) = 0

for all but a finite number of distinct primes p1, . . . pm ∈ P so that

Mt =
m⊕
i=1

Mt(pi).

This shows that

M = Mf ⊕

(
m⊕
i=1

Mt(pi)

)
.

Now, for all i = 1, . . . ,m, we have pliM(pi) = 0 for some li ∈ N and hence, for each 1 ≤ i ≤ m, we

apply lemma (3.6.9) to conclude that there exist unique natural numbers ni1 ≥ ni2 ≥ · · · ≥ niki ≥ 1

with

Mt(pi) ∼= R/(pni1i )⊕ · · · ⊕R/(pnikii ).

Putting all of this together, we then have that

M = Mf ⊕

 m⊕
i=1

 ki⊕
j=1

R/(pniji )


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as desired.

The uniqueness statement of the theorem implies that the prime powers pniji together with the rank

r completely characterize M . We call the prime powers pniji the elementary divisors of M . There-

fore theorem (3.6.10) states that a finitely generated module over a PID is completely determined

by the rank of the free part Mf ≤M and the elementary divisors of the torsion submodule Mt.

Next, we want to reassemble the p-power modules into another valuable decomposition for M . The

key fact is contained in the following lemma.

Lemma 3.6.11 Let R be a PID and let p1, . . . , pn ∈ P be distinct primes. If e1, . . . , en ∈ N and

x = pe11 · · · penn then

R/(x) ∼= R/(pe11 )⊕ · · · ⊕R/(penn ).

Proof. Let πi : R → R/(peii ) denote the quotient map and define ϕ = π1 × · · · × πn : R →

R/(pe11 ) × · · ·R/(P enn ) by ϕ(a) = (π1(a), . . . , πn(a)). Then ϕ is a surjective ring homomorphism

with kerϕ = (pe11 ) ∩ · · · ∩ (penn ). Therefore the first isomorphism theorem (3.2.10) implies that

R/(pe11 ) ∩ · · · ∩ (penn ) ∼= R/(pe11 )⊕ · · · ⊕R/(penn ).

Since the pi are distinct primes, they are relatively prime in pairs so that (pe11 ) ∩ · · · ∩ (penn ) =

(pe11 · · · penn ) by lemma (3.4.5). Therefore R/(x) ∼= R/(pe11 )⊕ · · · ⊕R/(penn ).

OK, if M is finitely generated and p1, . . . , pm ∈ P are the primes present in the elementary divisors

of M , we organize the exponents nij in the following (not necessarily square) array:

p1 : n11 ≥ · · · ≥ n1k1

p2 : n21 ≥ · · · ≥ n2k2

...

pm : nm1 ≥ · · · ≥ nmkm

Then for each h = 1, . . . , k = max{k1, . . . , km}, let

qh = pn1h
1 pn2h

2 · · · pnmhm

where we put a 1 for any pnihi with nih not in the array. Easily we see that for 2 ≤ h ≤ k, we

have qh|qh−1 and hence (qh−1) ≤ (qh). This proves all but the uniqueness statement in the follow

theorem: our final goal!
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Theorem 3.6.12 (Fundamental Theorem of Finitely Generated Modules over a PID) Let

M be a finitely generated module over a PID R. Then there is a unique integer r ≥ 0 and a unique

chain of non trivial ideals

(q1) ≤ (q2) ≤ · · · ≤ (qk)

in R with

M ∼= Mf ⊕R/(q1)⊕R/(q2)⊕ · · · ⊕R/(qk)

where Mf is a free R module of rank r.

Proof. Given M , we use theorem (3.6.10) to write

M ∼= Mf ⊕

 m⊕
i=1

 ki⊕
j=1

R/(pniji )


where r ≥ 0 is unique, p1, . . . , pm ∈ P are distinct and for each such prime pi there exist unique

natural numbers

ni1 ≥ ni2 ≥ · · · ≥ niki ≥ 1.

Using the notation given before the statement of the theorem, lemma (3.6.11) implies that

R/(qh) ∼= R/(pn1h
1 )⊕R/(pn2h

2 )⊕ · · · ⊕R/(pnmhm ).

Therefore we have that

m⊕
i=1

 ki⊕
j=1

R/(pniji )

 =
max{ki}⊕
j=1

(
m⊕
i=1

R/(pniji )

)
∼=

ki⊕
j=1

R/(qj).

We have already remarked that (qh−1) ≤ (qh) for 2 ≤ h ≤ k = max{ki}. This shows that

M ∼= Mf ⊕R/(q1)⊕R/(q2)⊕ · · · ⊕R/(qk)

with (q1) ≤ (q2) ≤ · · · ≤ (qk) and each (qh) non trivial.

It remains to establish the uniqueness. For this, we may assume that M is a torsion module. We

induct on the number of primes that appear as factors in the decomposition (3.6.2). If there is only

one prime p, then M = M(p) and hence the uniqueness is settled by lemma (3.6.9). If there is more

than one prime, with say p one of them, then by lemma (3.6.2) we have M = M(p) ⊕N where N

is the sum of the non zero M(q) appearing in decomposition of M . Now, N is a finitely generated

torsion module with one less prime in its factorization so that, by induction, there are unique ideals

(q′1) ≤ (q′2) ≤ · · · ≤ (q′k)
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in N with

N ∼= R/(q′1)⊕R/(q2)⊕ · · · ⊕R/(q′k).

Moreover, by lemma (3.6.9), there are unique natural numbers n1 ≥ · · · ≥ nh ≥ 1 such that

M(p) ∼= R/(pn1)⊕R/(pn2)⊕ · · · ⊕R/(pnh).

Then for M , it is clear that we have q1 = q′1p
n1 , q2 = q′2p

n2 and so on.

The elements qi ∈ R are called the invariant factors for M .
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Chapter 4

Two Applications of the Structure

Theorem

4.1 Structure theorem for (finitely generated) abelian groups

Our first application of the structure theorem (3.6.12) will be the case R = Z. Here, a finitely,

generated Z-module is just a finitely generated abelian group.

Theorem 4.1.1 If A is a finitely generated abelian group, then there is a unique integer r ≥ 0 and

a unique (possibly empty) set of integers m1, . . . ,mk with mj > 1 for all j and mk|mk−1| · · · |m1

such that

A ∼= Z
r ⊕ Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk .

Proof. Since Z is PID and a finitely generated abelian group A is a finitely generated Z-module,

the structure theorem (3.6.12) applies and hence there is a unique integer r ≥ 0 and a unique chain

of non trivial ideals

(m1) ≤ (m2) ≤ · · · ≤ (mk)

in Z with

A ∼= Z
r ⊕ Z/(m1)⊕ Z/(m2)⊕ · · · ⊕ Z/(mk).

An ideal (mj) in Z is non-trivial if and only if the generator mj > 1 and (mj) ≤ (mj+1) if and only

if mj+1|mj .
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Note that if, in addition, the group A is finite, then necessarily r = 0 and hence A is a finite direct

sum of cyclic groups, and the cyclic factors are uniquely determined (up to order) by the invariant

factors mj . Moreover, the product m = m1 · · ·mk of the invariant factors is the order of A. We

illustrate these ideas with an example.

Example 4.1.2 Find all abelian groups of order 24 up to isomorphism. There are exactly three

possibilities for the invariant factors: m1 = 24, m1 = 12,m2 = 2 and m1 = 6,m2 = 2,m3 =

2. Therefore there are exactly three abelian groups of order 24 up to isomorphism. They are,

respectively, Z24, Z12 ⊕ Z2 and Z6 ⊕ Z2 ⊕ Z2.

In practice, if the order of A is a large number, it can be difficult to determine the invariant factors mj

for A. However, we do have the alternate form of the structure theorem (3.6.10) which decomposes

A using the elementary divisors. In practice, it is easy to determine all of the elementary divisors

of A (in fact, if you look back at the proof of theorem (3.6.12), we used the elementary divisors to

find the invariant factors!). We will illustrate this by example as well, but first we restate theorem

(3.6.10) for finitely generated Z-modules.

Theorem 4.1.3 If A is a finitely generated abelian group, then there is a unique integer r ≥ 0 and

n (not necessarily distinct) prime integers p1, . . . , pn such that

A ∼= Z
r ⊕ Zpe11

⊕ · · · ⊕ Zpenn .

The prime powers peii are uniquely determined by A and this direct sum decomposition is unique up

to the order of the factors.

Proof. By theorem (3.6.10), there exist a unique r ≥ 0 and unique (positive) primes p1, . . . , pm ∈ Z

such that for each such prime pi there exist unique natural numbers

ni1 ≥ ni2 ≥ · · · ≥ niki ≥ 1

such that

A ∼= Z
r ⊕

 m⊕
i=1

 ki⊕
j=1

Z
p
nij
i

 .

If we let n =
∑m
i=1 ki, then

m⊕
i=1

 ki⊕
j=1

Z
p
nij
i


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is a sum of n cyclic groups of prime power order. The uniqueness follows from the uniqueness of the

nij .

Since the product of the elementary divisors of a finite group must be the order of the group, we

can quickly determine all possible elementary divisors if a finite abelian group A by looking at the

various ways to form elementary divisors from the prime factorization of |A|. Here is an example.

Example 4.1.4 Determine all abelian groups of order 24 up to isomorphism. First note that

24 = 23 · 3. Therefore the only possible collections of elementary divisors are {23, 3}, {22, 2, 3} and

{2, 2, 2, 3}. The corresponding abelian groups are

Z8 ⊕ Z3, Z4 ⊕ Z2 ⊕ Z3, and Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 respectively.

Theorem (3.6.10) implies that any abelian group of order 24 is isomorphic to one of these 3 groups,

and no two of these three are isomorphic. The reader should compare this example with the invariant

factor decomposition given earlier. When reconciling the two decompositions, it will be useful to

recall that for two integers a, b, Za ⊕ Zb ∼= Zab iff. a and b are relatively prime.

Example 4.1.5 Determine all abelian groups of order 1500 up to isomorphism. First note that

1500 = 22 · 3 · 53. Therefore the only possible collections of elementary divisors are {22, 3, 53},

{2, 2, 3, 53}, {22, 3, 52, 5}, {2, 2, 3, 52, 5}, {22, 3, 5, 5, 5} and {2, 2, 3, 5, 5, 5}. Each of these families

determines a group of order 1500. For example, {2, 2, 3, 53} determines

Z2 ⊕ Z2 ⊕ Z3 ⊕ Z125.

Theorem (3.6.10) implies that any abelian group of order 1500 is isomorphic to one of these 6 groups,

and no two of these 6 are isomorphic.

Example 4.1.6 From the proof of theorem (3.6.12), we can determine the possible invariant factors

for an abelian group of order 1500 from the elementary divisors. For example, for the elementary

divisors 22, 3, 5, 5, 5, we form the array of exponents

2 : 2

3 : 1

5 : 1 ≥ 1 ≥ 1

so that the elementary divisors are m1 = 22 · 3 · 5,m2 = 5 and m3 = 5. Using invariant factors, the

corresponding abelian group of order 1500 is

Z60 ⊕ Z5 ⊕ Z5
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and 5|5|60. Using the elementary divisors, the corresponding abelian group of order 1500 is

Z4 ⊕ Z3 ⊕ Z5 ⊕ Z5 ⊕ Z5.

But 4, 3, 5 are relatively prime in pairs so that Z4 ⊕ Z3 ⊕ Z5
∼= Z60 and the decomposition is the

same.

4.2 The Jordan canonical form

Our second application of the structure theorem (3.6.12) concerns a linear operator T : V → V on a

finite dimensional vector space. At first, it is not obvious how the structure theorem applies to this

situation at all. The next proposition will “tip our hand”.

Proposition 4.2.1 Let V be a finite dimensional vector space over a field F and let T : V → V be

a linear operator on V . Then

(1) V is an F[t]-module with the operation F[t]× V → V given by

(f(t), v) 7→ f(t)v = f(T )v.

(2) The restriction of the F[t] action on V to F is just the given vector space structure on V and

hence V is finitely generated as a F[t]-module.

(3) tv = T (v) for all v ∈ V .

(4) An additive subgroup W ≤ V is a F[t]-submodule if and only if W is a T -invariant F-subspace

of V .

Proof. (1) Exercise.

(2) The restriction to F is the scalar multiplication in V over F by definition. Now, dimF(V ) is finite

so that every element v ∈ V is a F-linear combination of some finite set of vectors {v1, . . . , vn} ⊂ V .

But every such combination is a F[t]-linear combination as well so that V is finitely generated as a

F[t]-module.

(3) The definition.

(4) If W ≤ V is an F[t]-submodule, then W is stable under F (constant polynomials) as well as t.

By the definition of the F[t] action on V , this implies that W is a F-subspace of V and T (W ) ⊆W .
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Therefore W is a T -invariant F-subspace of V . Conversely, if W is a T -invariant F-subspace of V ,

then W is stable under F and t. It follows that W is invariant under any polynomial f(t) ∈ F[t] and

hence W is a F[t]-submodule of V .

Now, the polynomial ring F[t] is a PID, and the proposition states (among other things) that given

a linear operator T : V → V , we have a finitely generated F[t]-module V , and hence the structure

theorem (3.6.12) applies. Namely, we have the following interpretation of (3.6.12).

Theorem 4.2.2 If V is a finite dimensional vector space over a field F and T : V → V is a

linear operator on V , then there exist n (not necessarily distinct) irreducible monic polynomials

p1, . . . , pn ∈ F[t] such that

F[t]V ∼= F[t]/(pe11 )⊕ · · · ⊕ F[t]/(penn )

as F[t]-modules. The prime powers pe1i are uniquely determined by T and V .

Proof. We have remarked that the structure theorem (3.6.12) applies to the F[t]-module V and

so we have a decomposition of V into a direct sum of a free F[t]-module and cyclic submodules of

prime power order with the appropriate uniqueness statement. However, since dimF(V ) < ∞, the

free part in the decomposition is necessarily 0 (F[t] is infinite dimensional as a F-module).

Let ψ : V → F[t]/(pe11 )⊕ · · · ⊕ F[t]/(penn ) be the F[t]-module isomorphism of theorem (4.2.2) and let

Wi = ψ−1(F[t]/(peii ))

for 1 ≤ i ≤ n. Then proposition (4.2.1)(4) implies that Wi is a F-subspace of V , necessarily finite

dimensional. Moreover, since the Wi are independent as F[t]-modules, they are independent as F-

subspaces as well. It follows that if we choose a basis Bi for Wi as an F-subspace for all i, then

B = (B1, . . . ,Bn) is a basis for V . That is,

FV = W1 ⊕ · · · ⊕Wn

as F-vector spaces. Moreover, proposition (4.2.1)(4) also implies that Wi is T -invariant for all i so

that the matrix of T with respect to the basis B has block form.

Now, fix an i between 1 and n and for notational brevity let W = Wi and

peii = f = tk + ak−1t
k−1 + · · ·+ a1t+ a0.

Note that 1 + (f) generates F[t]/(f) ∼= W as an F[t]-module. Let w0 = ψ−1(1 + (f)) ∈ W and let

wi = T i(w0) for i ≥ 1. Then wi ∈W for all i and ψ(wi) = ti + (f) for all i, the latter since ψ is an

F[t]-module homomorphism and T i(w0) = tiw0 by definition.
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Now, given w ∈ W , we know ψ(w) = g(t) + (f) for some g ∈ F[t] and since deg f = k, we may

assume that deg g ≤ k − 1. Say

g(t) = bk−1t
k−1 + · · ·+ b1t+ b0

with bj ∈ F. Therefore we have

w = ψ−1(g(t) + (f)) =
k−1∑
j=0

bjψ
−1(tj + (f)) =

k−1∑
j=0

bjwj

and hence the set {w0, . . . , wk−1} spans W as an F-module. Moreover, if

b0w0 + · · ·+ bk−1wk−1 = 0

for some scalars bj ∈ F. then g(t) + (f) = (f) where

g(t) = b0 + · · ·+ bk−1t
k−1 ∈ F[t].

But deg g(t) ≤ k− 1 so that g(t) ∈ (f) iff. g = 0 and hence bj = 0 for all 1 ≤ j ≤ k− 1. This shows

that {w0, . . . , wk−1} is a basis for W as an F-module. We note that

dimF(W ) = k = deg f = deg peii .

Note that by construction,

wi+1 = T (wi)

for 0 ≤ i ≤ k − 1 and

ψ(wk) = tk + (f) = −

k−1∑
j=0

ajt
j

+ (f)

and hence

wk = −

k−1∑
j=0

ajwj

 .

It follows that the matrix of T |W with respect to the basis (w0, . . . , wk−1) for W has the form

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...

0 0 · · · 1 −ak−1


. (4.1)

We have essentially proven the following theorem.
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Theorem 4.2.3 Let V be a finite dimensional vector space over a field F and let T : V → V be a

linear operator on V . Then there is a basis B for V in which the matrix of T is in block form where

each of the blocks has the form (4.1). Moreover, the scalars in the non-trivial column of each such

block are uniquely determined by T .

Proof. Given T : V → V , we let Wi be as above so that Bi = (wi0 , . . . , wiki−1) is a basis for

Wi where ki = deg peii . On Wi, the restriction of T has the form (4.1) and the non-trivial column

consists of the non-leading coefficients of the (monic) polynomial peii , and are therefore uniquely

determined by theorem (4.2.2). Finally, we have seen that B = (B1, . . . ,Bn) is a basis for V , and

the matrix for T with respect to B is in block form, with the ith block being the matrix of T |Wi .

This completes the proof.

When we write T in the above basis, the operator is said to be in rational canonical form. It is

the best form available for an arbitrary operator over a F-vector space when F is any field. If F = C

is the field of complex numbers, we can do better than the rational canonical form.

If F = C, then every irreducible polynomial has the form t− a for some a ∈ C. Therefore, using the

notation above, we have peii = (t− ai)ei so that

Wi
∼= C[t]/((t− ai)ei)

and dimF(Wi) = ei.

Again we fix an i between 1 and n and write W = Wi, a = ai, f = (t− ai)ei and ei = k for brevity.

We again define w0 = ψ−1(1 + (f)), but this time we set

wi = (T − a · I)iw0

for i ≥ 1. Note that ψ(wi) = (t − a)i + (f) because ψ is a C[t]-module homomorphism. Moreover,

ψ(wi) = 0 iff. wi = 0 since ψ is an isomorphism. We have

w1 = (T − a · I)w0, . . . , wk−1=(T − a · I)wk−2, wk = (T − a · I)wk−1 = (T − a · I)kw0 = 0

where wk = 0 since ψ(wk) = (f). Solving each equation gives

Tw0 = w1 + aw0, . . . , Twk−2 = wk−1 + awk−2, Twk−1 = awk−1.

We leave it as an exercise to show that (w0, . . . , wk−1) is a C-linearly independent set. Since

dimC(W ) = k, (w0, . . . , wk−1) is a basis for W and the above computation shows that the ma-
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trix for the restriction of T to W in this basis is

a 0 · · · 0 0

1 a · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 a


. (4.2)

These matrices are called Jordan blocks. The previous remarks constitute a proof of the following

theorem. We will write out the proof to tidy up.

Theorem 4.2.4 Let V be a finite dimensional complex vector space and T : V → V an operator on

V , then there is a basis B for V in which the matrix for T is block form with Jordan blocks (4.2).

Proof. Since every irreducible polynomial over C is linear, theorem (4.2.2) implies that

V = W1 ⊕ · · · ⊕Wn

where each Wi is isomorphic to C[t]/((t− ai)ei). For each i, we construct the basis for Wi as above.

Then the matrix of T is block form and the blocks have the form (4.2).

The matrix of T in the basis of the theorem is referred to as the Jordan form of T . It is uniquely

determined by T up to a permutation of the basis vectors since the elementary divisors of the

C[t]-module defined by T are uniquely determined by T .

Note that the Jordan form of T is lower triangular, and hence the diagonal entries, that is those

complex numbers ai ∈ C appearing in the decomposition of V are the eigenvalues of T . The number

of appearances of any given eigenvalue a for T is exactly the multiplicity of the root a for the

characteristic polynomial p of T .

Let J be a Jordan block with diagonal entry a ∈ C. Clearly a is the only eigenvalue for J and

the eigenspace for a is 1 dimensional ((aI − T ) has nullity 1.) Conversely, if an operator has

all eigenvectors scalar multiples of some fixed vector, then it can only have one eigenvalue (else

independent eigenvectors). Moreover, its Jordan form cannot have more than one Jordan block (else

it has at least 2 eigenvectors in a basis).

It follows that for an operator T , the number of Jordan blocks with diagonal entry a in the Jordan

form of T is exactly the dimension of the eigenspace for the eigenvalue a ∈ C. This dimension is

an integer between 1 and the multiplicity of a in the characteristic polynomial p of T . If these

multiplicities are not too big, we can use this to find the Jordan form. Here is an example.
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Example 4.2.5 Determine the Jordan form of the matrix

A =


1 1 0

0 1 0

0 1 1

 .
The characteristic polynomial is (t− 1)3, and by inspection the matrix I3−A has rank 1. Therefore

the eigenspace is 2 dimensional so that there are two Jordan blocks in the Jordan form. Necessarily

the Jordan form is

J =


1 0 0

1 1 0

0 0 1

 .
If a is a k-fold root in the characteristic polynomial of T , the number of Jordan blocks in the Jordan

form with diagonal entry a is an integer between 1 and k. Here are the possibilities for small k (we

omit 0 entries).

k = 1 : [a];

k = 2 :

 a

1 a

 ,
 a

a

 ;

k = 3 :


a

1 a

1 a

 ,

a

1 a

a

 ,

a

a

a

 ;

k = 4 :


a

1 a

1 a

1 a

 ,

a

1 a

1 a

a

 ,

a

1 a

a

1 a

 ,

a

1 a

a

a

 ,

a

a

a

a

 .

Note that for k ≤ 3, the number of Jordan blocks with diagonal entry a, (i.e. the dimension of the

null space of T − a · 1) is completely determines the portion of the Jordan form with diagonal entry

a. When k = 4 however, there are two possibilities for two 2 Jordan blocks. It can be shown that

the operator (T − a · 1)2 distinguishes the cases. We won’t worry about the details.

Example 4.2.6 What is the Jordan form of a matrix whose characteristic polynomial is

(t− 3)3(t− 7)4
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and such that the space of eigenvectors for the eigenvalue 3 is 2 dimensional and the space of

eigenvectors for the eigenvalue 7 is 3 dimensional.

The information given means that for a = 3, we have 2 Jordan blocks in a 3 × 3 matrix and for

a = 7 we have 3 Jordan blocks in a 4× 4 matrix. The only possibility is

2

1 2

2

7

1 7

7

7


.
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