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Chapter 1

Topics in Advanced Group Theory

1.1 Group actions

In this lecture, we begin our deeper investigation into the theory of groups with the notion of a group

action. The notion of a group acting on a set is a fundamental tool in contemporary mathematics.

Two of the main topics in this course are the mathematical notion of symmetry and representation

theory of groups. Both of these notions involve the notion of group actions. Before we give the main

definition, let us recall that a binary operation on a set S is a function ∗ : S×S → S and we usually

write ∗(s1, s2) = s1 ∗ s2. This notation is responsible for the terminology “multiplication” that is

often used to describe binary operations on sets. In the same spirit, if A,B and C are any sets, we

might call a function µ : A × B → C a “multiplication”. We do not mean anything by this term,

other than an ordered pair of elements (a, b) determines a unique element µ(a, b) of the set C. In the

case of a group action, we are concerned with the case in which A = G is a group and B = C = S

is a set and the mapping G× S → S has two additional properties. Here is the main definition.

Definition 1.1.1 (Group action) Let G be a group (written multiplicatively) and let S be a set.

We say that G acts on S if we are given a function G× S → S written (g, s) 7→ gs that satisfies

G1. (gh)s = g(hs) for all g, h ∈ G and all s ∈ S.

G2. es = s for all s ∈ S where e ∈ G is the identity element.

In this case we also say that S is a G-set and the function G× S → S is called a group action.
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In other words, a set S is a G-set if for every g ∈ G and s ∈ S, we have an element gs ∈ S. Note

that this means that each g ∈ G determines a function from S → S. We will say a great deal more

about this. We will now present some guiding examples of group actions on various different sets.

The reader is advised to thoroughly master each of the following examples as their importance in

the rest of our work can not be over estimated.

Example 1.1.2 1. If n ∈ N is a fixed positive integer, then the symmetric group Sn acts on

the set S = {1, 2, . . . , n} under the assignment (σ, j) 7→ σ(j). That is, we define a function

Sn×S → S by (σ, j) 7→ σ(j). The axiom G1 follows immediately from the law of composition

in Sn and G2 holds by the definition of the identity permutation (verify!).

2. More generally, if S is any set, then the permutation group A(S) (i.e. the group of all bijective

mappings S → S under function composition) acts on S via σs = σ(s).

3. In this example, the group G plays both the role of the group and the set. That is, every group

G acts on itself via left multiplication. Specifically, the law of composition G × G → G

satisfies G1 (associative law) and G2 (identity) and hence defines an action of G on itself.

That is, a group G is always a G-set.

4. Every group G is also a G-set via conjugation. To define this action, we declare that (g, h) 7→

ghg−1 for all g ∈ G and h ∈ G. To avoid horrible confusion with our notations, we will never

use the notation gh to denote an element g acting on h ∈ G via conjugation. The verification

that this is indeed an action of G on G is carried out by noting that (g1g2)h(g1g2)−1 =

g1(g2hg
−1
2 )g−1

1 for all g1, g2, h ∈ G so that G1 holds and ehe = h for all h ∈ G so that G2

holds as well. This is a particularly important action of a group on itself. In fact, we will

devote an entire lecture to it!

5. More generally, if G is a group and S is the set of all subgroups H of G, then G acts on S by

conjugation. Recall from MAT 150A that gHg−1 is a subgroup of G whenever H is a subgroup

of G. The verification of G1 and G2 is the same as in example 4. Do it!

6. The next example is actually quite general. Let G be a group and let H be a (not necessarily

normal) subgroup of G. Let G/H denote the set of left cosets of H in G. We want to

emphasize at this point that G/H is not a group unless H is normal, but we can always

consider the set of left cosets of H in G as a set. This coset space G/H is a G-set via the
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action (g, aH) 7→ (ga)H. We must show that this operation is well defined. Suppose then that

aH = bH so that a−1b ∈ H. Then for any g ∈ G, we have

(ga)−1(gb) = a−1g−1gb = a−1b ∈ H

so that (ga)H = (gb)H. We leave the careful verification that this map defines an action of G

on G/H as an exercise.

We conclude this lecture by summarizing briefly and giving an equivalent definition of a group action.

A set S is called a G-set if there is a mapping G×S → S that satisfies G1 and G2. In other words,

each g ∈ G defines a function S → S (we will see that the axioms G1 and G2 imply that each such

function is a permutation of S) in such a way that a product of two elements in G is assigned to the

composition of maps S → S and the identity element of G is assigned to the identity map S → S.

We state this more precisely in the following theorem.

Theorem 1.1.3 Let G be a group and S be a set. Then S is a G-set if and only if there exists a

homomorphism ρ : G→ A(S) where A(S) denotes the permutation group of S.

Proof. (=⇒) If S is a G-set, then for each g ∈ G, the assignment s 7→ gs is a function S → S.

Moreover this function is a permutation of S since the function determined by g−1 is obviously an

inverse to the function determined by g. This gives a map ρ : G → A(S) defined by ρ(g)(s) = gs.

Now, the axiom G1 shows that for all g, h ∈ G and all s ∈ S, we have

ρ(gh)(s) = (gh)(s) = g(hs) = ρ(g)(hs) = ρ(g)(ρ(h)(s)) = ρ(g)ρ(h)(s)

so that ρ is a homomorphism.

(⇐=) Now suppose that we are given ρ : G → A(S). We then define a map G × S → S by

(g, s) 7→ ρ(g)(s). Then the axioms G1 and G2 follow immediately from the fact that ρ is a

homomorphism and the identity element of A(S) is the identity map.

1.2 Stabilizers and orbits

In this lecture, we introduce two important objects associated with a group action on a set S:

isotropy subgroups and G-orbits. In general, if S is a G-set, s ∈ S and g ∈ G, it will be important

to know when gs = s. One can view this equation from two distinct points of view. Namely, we can
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fix g ∈ G and try to find all s ∈ S such that gs = s, or one can fix s ∈ S and find all g ∈ G such

that gs = s. We will want to be able to do both. For a given s ∈ S, the set

Gs = {g ∈ G : gs = s}

is called the stabilizer of s or the isotropy subgroup of s. To justify the latter terminology, we

will need the following proposition. The reader is encouraged to write his or her own proof before

reading the proof given here.

Proposition 1.2.1 Let G be a group and let S be a G-set. Then for all s ∈ S, the stabilizer Gs of

s is a subgroup of G.

Proof. Let s ∈ S be arbitrary. We show that Gs is closed under product and inversion. If g, h ∈ Gs,

then we compute using G1:

(gh)(s) = g(hs) = gs = s

and hence gh ∈ Gs. Also, if e ∈ G denotes the identity element, we have

s = es = (g−1g)(s) = g−1(gs) = g−1s

so that g−1 ∈ Gs. The proposition follows.

Let’s return to the examples of the previous lecture and determine the stabilizers of a few elements.

Example 1.2.2 1. If Sn acts on {1, 2, . . . , n} and 1 ≤ j ≤ n, then the stabilizer of j is the subset

of Sn that leave j fixed. This stabilizer is naturally isomorphic to Sn−1. Proof?

2. If G acts on itself by left multiplication, then the stabilizer of any point is trivial. To see this,

let h ∈ G be arbitrary and note that g ∈ Gh if and only if gh = h which is true if and only if

g = e by the cancellation law in G.

3. If G acts on itself by conjugation, and h ∈ G, then g ∈ Gh if and only if ghg−1 = h if and only

if gh = hg. Therefore we see that the stabilizer of h ∈ G under conjugation is precisely the

set of elements in G that commute with h. In this context, the stabilizer of an element under

conjugation is often called the centralizer of h.

4. If G acts on the set S of subgroups of G, and H ∈ S, then g ∈ GH if and only if gHg−1 = H.

For this example, the stabilizer of H is often called the normalizer of H in G. It is a nice

exercise to show that the normalizer of H in G is the largest subgroup of G in which H is

normal.
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5. If H ≤ G is a subgroup of G, and G acts on S = G/H by left translation, then g ∈ G is in the

stabilizer of aH if and only if (ga)H = aH if and only if a−1ga ∈ H.

We now turn our attention to the problem of determining those s ∈ S that satisfy gs = s for a given

g ∈ G. It is useful to recast this problem in terms of an equivalence relation induced on S by the

action of G. We state the result as a proposition. Once again, the reader is invited to furnish his or

her own proof of this proposition. Also, please compare this proposition to the result in problem 2

of the MAT 150A midterm exam 1.

Proposition 1.2.3 If S is a G-set, then the relation ∼ defined on S by s1 ∼ s2 if and only if

gs1 = s2 for some g ∈ G is an equivalence relation.

Proof. For reflexively, we note that es = s for all s ∈ S so that s ∼ s for all s ∈ S. For symmetry,

we note that if s1 ∼ s2, then gs1 = s2 for some g ∈ G and hence g−1s2 = s1 so that s2 ∼ s1.

Finally, if s1 ∼ s2 and s2 ∼ s3, then gs1 = s2 and hs2 = s3 for some g, h ∈ G. Then we easily have

(hg)s1 = h(gs1) = hs2 = s3 so that s1 ∼ s3 and the proof is complete.

Definition 1.2.4 (Orbit) If S is a G-set, the equivalence classes of the equivalence relation induced

on S are called the orbits of S under G. If s ∈ S, the class containing s is called the orbit of s.

Most authors denote the orbit of s under G by Gs. Artin is an exception (he thinks it looks too

much like Gs, the isotropy group). Since the purpose of these lecture notes is primarily to facilitate

reading Artin, we will adopt his notation scheme completely and denote the orbit of s under G by

Os. Therefore,

Os = {gs : g ∈ G}.

Note that, by definition, s and t are in the same orbit if and only if gs = t for some g ∈ G. The

orbit of s ∈ S is the singleton {s} if and only if gs = s for all g ∈ G. Such an element is called a

fixed point. Note that s ∈ S is a fixed point if and only if Gs = G. This is actually a special case

of the relationship between the orbits of S and the group structure of G. This relationship will be

at the heart of our upcoming applications of G-sets.

Theorem 1.2.5 (Counting formula) If S is a G-set and s ∈ S, then |Os| = [G : Gs]. That is,

the order of the orbit of s under G is the index of the stabilizer of s in G.
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Proof. The theorem states that two sets have the same number of elements. Our proof will be

completely typical for such a result; we will establish a bijective function from Os to G/Gs, the

space of left cosets of Gs in G. The obvious choice for the map ϕ : Os → G/Gs is given by the rule

ϕ(gs) = gGs. We must show that this map is well defined and bijective. First, if gs = hs, then

h−1gs = s so that h−1g ∈ Gs and hence gGs = hGs. This shows ϕ is well defined. Moreover, each

of these implications are necessary as well as sufficient so that ϕ is injective. Finally, ϕ is trivially

onto since if we are given gGs ∈ G/Gs, then the element gs ∈ Os and of course ϕ(gs) = gGs.

We conclude this lecture with a look at some orbits in our family of examples.

Example 1.2.6 1. If Sn acts on {1, 2, . . . , n} and 1 ≤ j ≤ n, then the orbit of j is {1, 2, . . . , n}

since you can send j to any position with all permutations. Note that in this case the counting

formula states that n!/(n− 1)! = n.

2. If G acts on itself by left multiplication, we have seen that the stabilizer of any point is trivial.

It follows from the counting formula that the orbit of any element has order |G| and hence is

equal to G.

3. If G acts on itself by conjugation, the orbit of h ∈ G is the set

Oh = {ghg−1 : g ∈ G}.

This orbit is always called the conjugacy class of h. Note that the counting formula for this

example states that the size of a conjugacy class of h is the index of the centralizer of h in G.

4. If G acts on the set S of subgroups of G, then an element H ∈ S is a fixed point if and only if

H is normal in G.

Note that in examples 1 and 2, there is only one orbit (i.e. all elements are in the same orbit). We say

that G acts transitively on S if there is exactly one orbit. We conclude this lecture by remarking

that the counting formula can be combined with Lagrange’s theorem to yield the following corollary.

We leave the proof as an exercise for the reader.

Corollary 1.2.7 If S is a G-set and s ∈ S, then |G| = |Gs||Os|.
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1.3 The class equation of an action

We saw in the last lecture that if G is a group and S is a G-set, then the action of G on S partitions

S into orbits Os. If S is a finite set, there are necessarily a finite number of orbits in this partition.

Recall that s ∈ S is a fixed point if the action if Os = {s}. Let SG denote the set of fixed points so

that

SG = {s ∈ S : gs = s for all g ∈ G}.

Since the orbits form a partition of S, it follows that |S|, the number of elements in S, is the sum

over the disjoint orbits of the sizes of these orbits. Since each fixed point is in an orbit by itself, the

sum over these singleton orbits is precisely the number of fixed points. All of this fits together into

the following theorem.

Theorem 1.3.1 If G is a group and S is a finite G-set, then

|S| = |SG|+
∑

disjointnon−
trivialorbits

|Os|.

Proof. The proof has essentially been given above. Namely, since the orbits from a partition of S,

it follows immediately that the sum over all disjoint orbits
∑
|Os| is equal to |S|. By definition, an

orbit Os is non-trivial if |Os| > 1 so that s ∈ S is a fixed point if and only if Os is a trivial orbit.

Therefore the sum over the trivial orbits is precisely the number of fixed points.

This innocent looking formula is called the class equation of the action (G-set). It has a

surprising number of useful applications. We remark that for simplicity, we will only speak of the

class equation of finite G-sets, although the notion can be defined for infinite G-sets as well. If G

is a finite group, then the counting formula from the previous lecture implies that the number of

elements in each orbit is a divisor of G. This puts a severe restriction on the positive integers that

may occur in the class equation of a G-set. Before we can state our first application of the class

equation we need to make a definition.

Definition 1.3.2 (p-Group) A finite group G is a p-group if |G| = pn for some prime p ∈ Z and

some positive integer n ∈ N.

We remark that a p-group is necessarily finite.

Proposition 1.3.3 If G is a p-group and S is a finite G-set, then |S| ≡ |SG| (mod p).
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Proof. If s ∈ S is in a non-trivial orbit, then 1 < |Os| and |Os| is a divisor of |G| = pn. It follows

that |Os| ≡ 0 (mod p). Therefore the class equation reduces modulo p to |S| ≡ |SG| (mod p).

1.4 Applications of G-set to counting

Suppose we wish to determine the number of distinguishable ways the faces of a cube can be marked

with one to six dots to form a die. For example, a standard die is marked so that when it is placed

on a table with the 1 on the bottom and the 2 facing front, the 6 is on top, the 3 on the left, the

4 on the right and the 5 to the back. There are other (distinguishable) ways to mark the die. If

we temporarily distinguish between the faces of an unmarked cube calling them bottom, front, top,

left, right and back, then there are 6 choices for how to mark the bottom, 5 choices for the front and

so on so that there are 6! = 720 ways to mark the die. We will say that two markings of the die are

indistinguishable if one marking can be carried to the other by a rotation of the marked cube. For

example, if the standard die described above is rotated 90◦ counter-clockwise (viewed from above),

the 3 will be in front and so on, but it is the same die. The rotations of the die form a group G, with

the law of composition being composition of rotations. If you like, you can think if G as a certain

subgroup of S8, since each rotation of the cube determines a permutation of the 8 vertices.

Now, each of the 6 faces of the cube can be placed down, and then any 1 of the 4 faces perpendicular

to the table can be put in the front. Therefore there are 24 possible positions for the cube. Moreover,

each one of these positions can be obtained from any other one by a rotation of the cube. It follows

that |G| = 24.

Let S be the set of 720 possible markings of the cube. We note that G acts on S by rotating

the cube. Two markings of the cube are indistinguishable if and only if they are in the same orbit.

Therefore the problem of counting the distinguishable markings of the cube is equivalent to counting

the number of distinct orbits in the G-set S.

The following theorem, due to Burnside, is a tool for determining the number of orbits of a finite

G-set S in the case that G is a finite group. For notation, for each g ∈ G we let

Sg = {s ∈ S : gs = s}

and recall that for each s ∈ S, Gs = {g ∈ G : gs = s}. Finally, recall that Os = {gs : g ∈ G} is the

orbit of s.
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Theorem 1.4.1 (Burnside) Let G be a finite group and S a finite G-set. If r is the number of

orbits in S under G, then

r · |G| =
∑
g∈G
|Sg|.

Proof. Let N be the number of elements (g, s) ∈ G × S such that gs = s. For each g ∈ G, there

are exactly |Sg| such pairs so that

N =
∑
g∈G
|Sg|. (1.1)

On the other hand, for each s ∈ S, there are exactly |Gs| such pairs so that

N =
∑
s∈S
|Gs|.

The counting formula together with Lagrange’s theorem implies that for each s ∈ S we have |Gs| =

|G|/|Os| so that

N =
∑
s∈S

|G|
|Os|

= |G|

(∑
s∈S

1
|Os|

)
.

Now, 1/|Os| has the same value for all s in the same orbit. Therefore of O is any orbit, then∑
s∈O

1
|Os|

= 1.

Therefore we have

N = |G| · (the number distinct orbits) = |G| · r. (1.2)

Equating the expressions for N in equations (1.2) and (1.1) gives the result.

Corollary 1.4.2 If G is a finite group and S is a finite G-set, then

(the number of orbits of S under G) =
1
|G|
·
∑
g∈G
|Sg|.

Example 1.4.3 We can now easily answer our question regarding the markings of the die. Letting

G denote the group of rotations of the cube, we note that if g ∈ G and g 6= e, then |Sg| = 0 since

every non-identity element of G takes any marking to a distinct marking. However, |Se| = 720 since

the identity element fixes every marking. Therefore if we let r denote the number of orbits of S

under G (the number of distinguishable markings), the corollary to Burnside’s theorem gives

r =
1
24
· 720 = 30.
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Example 1.4.4 How many distinguishable ways can seven people be seated at a round table, where

there is no distinguishable “head” of the table? Of course there are 7! ways to assign people to

different chairs. We let S be the set of the 7! possible assignments. A rotation of people achieved

by asking each person to move to the place to the right results in the same arrangement. Such a

rotation generates a cyclic group G of order 7, which we consider to act on S in the obvious way.

Just as in the previous example, only the identity element e ∈ G leaves any arrangement fixed, and

it leaves all 7! arrangements fixed. It follows from the corollary to Burnside’s theorem that if r is

the number of orbits in S under G, then

r =
1
7
· 7! = 6! = 720.

Therefore there are 720 different arrangements of people.

Example 1.4.5 How many distinguishable necklaces (with no clasp) can be made using seven

different colored beads of the same size? Unlike the table in the previous example, a necklace can be

turned over as well as rotated. Therefore we should consider the full dihedral group D7 as acting on

the set S of 7! possible arrangements of the beads. Since the order of D7 is |D7| = 14, the number

r of distinguishable necklaces is

r =
1
14
· 7! = 360.

In using the corollary to Burnside’s theorem, you have to be able to compute |G| and |Sg| for all

g ∈ G. in practice, computing |G| will not present any difficulties. The next example shows that

the computation of |Sg| is not always as trivial as in the previous examples. We continue to assume

that the reader is familiar with elementary combinatorics.

Example 1.4.6 We want to find the number of distinguishable ways the edges of an equilateral

triangle can be painted if four different colors of paint are available, assuming only one color is used

on a single edge, and the same color may be used on different edges.

There are 43 = 64 ways of painting the edges in all since each of the 3 edges can be painted any

one of the 4 colors. Let S be the set of these 64 painted triangles. The group G acting on S is

the symmetry group of the triangle and hence G = D3 = S3. We will use the notations for S3

established in MAT 150A so that x, y ∈ S3 satisfy x3 = 1, y2 = 1 and yx = x2y. We must compute
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|Sg| for each of the six elements g ∈ S3.

|S1| = 64 each painted triangle is left fixed by 1 ∈ S3.

|Sx| = 4 to be invariant under x ∈ S3, all edges must be the same color,

and there are 4 colors.

|Sx2 | = 4 same reason as for x.

|Sy| = 16 the edges that are interchanged must be the same color (4 choices) and the

remaining edge can be any color (times 4 choices).

|Sxy| = 16 same reason as for y.

|Sx2y| = 16 same reason as for y.

Now we can compute ∑
g∈S3

|Sg| = 64 + 4 + 4 + 16 + 16 + 16 = 120.

It follows that if r denotes the total number of distinguishable triangles, then

r =
1
6
· 120 = 20.

1.5 Conjugation

The purpose of this lecture is to thoroughly investigate the notions of isotropy subgroups, orbits,

fixed points and the class equation for the action of conjugation. Recall that a group G may act on

itself in a number of ways, and by conjugation, we always mean the action defined by the mapping

G × G → G given by (g, h) 7→ ghg−1. The results we will find here are of interest by themselves.

They will also play an important role in the subsequent lecture on the Sylow theorems.

The stabilizer of h ∈ G under conjugation is called the centralizer of h in G. It is denoted by

Z(h) so that

Z(h) = {g ∈ G : ghg−1 = h} = {g ∈ G : gh = hg}.

Therefore we see that the centralizer of h ∈ G is the set of those elements in G that commute with

h. Note that h ∈ Z(h) for all h ∈ G since every element commutes with itself.

The orbit of h ∈ G under conjugation is called the conjugacy class of h and is usually denoted by

Ch. Therefore

Ch = {h′ ∈ G : h′ = ghg−1 for some g ∈ G.}
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In this notation, the counting formula for group actions reads

|G| = |Ch||Z(h)|

for all h ∈ H.

If S is any G-set, then an element s ∈ S is a fixed point of the action if and only if its stabilizer

Gs = G. Therefore in the case of conjugation, and element h ∈ G is a fixed point if and only if the

centralizer Z(h) = G. Recall that the center of a group G is the subgroup

Z = Z(G) = {h ∈ G : gh = hg for all g ∈ G}.

Our remarks imply that h ∈ G is a fixed point under the action of conjugation if and only if h ∈ Z

so that |GG| = |Z|. We note that if h ∈ Z, then the counting formula implies that the conjugacy

class of h consists of h alone. If we put all of this together, we see that the class equation for the

action of a group G on itself by conjugation becomes

|G| = |Z|+
∑

non−trivial
conj.classes

|Ch|. (1.3)

Note that for each h ∈ G, |Ch| = [G : Z(h)] so that the size of any conjugacy class is a positive

divisor of |G|. Moreover, if we denote the identity element of G by 1 ∈ G, then C1 = {1} so that

one of the numbers in (1.3) is always a 1. If the action of G is conjugation, the equation (1.3) is

usually referred to as the class equation of G. That is, if no other action is specified, the term

“class equation” always means the class equation of the action of G on itself by conjugation.

Example 1.5.1 The reader can check that the conjugacy classes for the group S3 are the following

three subsets:

{1}, {x, x2}, {y, xy, x2y}.

Therefore the class equation for S3 is

6 = 1 + 2 + 3.

Among other things, this equation tells us that the center of S3 is the trivial subgroup {1}.

If G is a p-group, the class equation can often be an effective tool in learning about the structure of

G. The following two propositions illustrate this idea.

Proposition 1.5.2 If G is a p-group, then Z = Z(G) 6= {1}. That is, the center of a p-group is

always non-trivial.
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Proof. Using our previous result on p-group actions, we know that 0 ≡ |G| ≡ |Z| (mod p). Since

1 ∈ Z, |Z| ≥ 1 and hence |Z| ≥ p since |Z| ≡ 0 (mod p).

The next result is an interesting example of an application of G-sets to the classification of finite

groups. If you like a good challenge, see if you can discover a proof that does not use group actions.

Proposition 1.5.3 If p ∈ Z is a prime, then every group of order p2 is abelian.

Proof. Let g ∈ G be an arbitrary element. It suffices to show that Z(g) = G (why?). If g ∈ Z,

then of course Z(g) = G and we are done. Otherwise Z(g) properly contains the center Z since

Z ⊆ Z(g) and g /∈ Z. By the previous proposition, |Z| ≥ p so that |Z(g)| > p. But |Z(g)| is a

divisor of |G| = p2 so that we must have |Z(g)| = p2 and hence Z(g) = G.

We conclude this lecture by remarking that the last result fails for higher powers of the prime p.

For example, the dihedral group D4 is a non-abelian group of order 8 = 23.

1.6 Application: The Sylow Theorems

The purpose of this lecture is to illustrate the usefulness of group actions by proving a partial

converse to the theorem of Lagrange. In particular, thanks to Lagrange, we know that if G is a

finite group and H is any subgroup of G, then the order of H must divide |G|. We want to turn this

question around: given a finite group G and a positive divisor d of |G|, can we find a subgroup H of

G such that |H| = d? The answer to this question is no in general. For example, it can be shown

that the alternating group A4 (which has order 12) has no subgroup of order 6, even though 6 is a

divisor of 12. The Sylow theorems assert that for a prime power divisor of |G|, there is a subgroup

of that prime-power order. They also give information about the number of such subgroups.

These theorems are of vital importance by themselves, but we wish to emphasize again that we

include them here mainly as an example of the power of the notion of group actions. As we will see,

the set S that the group will act on will sometimes be the group itself, a collection of cosets of a

subgroup or even the collection of all subgroups.

We begin by establishing some notation. Let S be a finite G-set with, say, r orbits and let {s1, . . . , sr}

contain exactly one element from each orbit. Suppose that Osi = {si} for 0 ≤ i ≤ t so that

{Ost+1 , . . . ,Osr} is the collection of non-trivial orbits. In this notation, the class equation of the
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action on S becomes

|S| = |SG|+
r∑

i=t+1

|Osi |. (1.4)

Most of the results in this lecture will follow from equation (1.4) once we choose the right set S and

the right group action on S. We have already given a proof of the following theorem. We state it

again for convenience as well as to emphasize its importance. This theorem seems to be amazingly

powerful! In the rest of the lecture, if we choose the correct set, the correct group action on it and

apply this theorem, what we want will seem to drop in our lap with no effort at all. Recall that a

group G is a p-group of |G| = pn for some prime p and some positive integer n ∈ N.

Theorem 1.6.1 If G is a p-group and S is a finite G-set, then |S| ≡ |SG| (mod p).

Our goal in this lecture is to show that a finite group G has a subgroup of every prime power order

dividing |G|. We begin with the special case known as Cauchy’s theorem. For the rest of this lecture,

p is always a prime integer.

Theorem 1.6.2 (Cauchy) If G is a finite group and p divides |G|, then G has an element of order

p and, consequently, a subgroup of order p.

Proof. Let S be the set of all p-tuples (g1, . . . , gp) of elements of G such that g1g2 · · · gp = e. That

is,

S = {(g1, . . . , gp) : gi ∈ G and g1g2 · · · gp = e}.

We claim that p divides |S|. To see this, note that when forming a p-tuple in S, we may choose

g1, . . . , gp−1 arbitrarily and then gp is uniquely determined by gp = (g1 · · · gp−1)−1. Therefore

|S| = |G|p−1 and since p divides |G| by hypothesis, we see that p divides |S| as claimed.

Now define σ ∈ Sp to be the cycle

σ =

 1 2 · · · p− 1 p

2 3 · · · p 1


and let σ act on S by

σ(g1, g2, . . . , gp) = (gσ(1), gσ(2), . . . , gσ(p)) = (g2, g3, . . . , gp, g1).

Note that (g2, g3, . . . , gp, g1) ∈ S since g1(g2 · · · gp) = e implies that g1 = (g2 · · · gp)−1 so that

(g2 · · · gp)g1 = e as well. Therefore we see that σ does indeed act on S and we define an action of

the cyclic subgroup 〈σ〉 of Sp on S by iteration in the obvious way.
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Now, |〈σ〉| = p so that we may apply theorem (1.6.1), and hence we have |S| ≡ |S〈σ〉| (mod p). Since

p divides |S|, this congruence shows that p divides |S〈σ〉| as well. Now, an element (g1, . . . , gp) ∈ S

is left fixed by 〈σ〉 if and only if g1 = g2 = · · · = gp. We know that (e, . . . , e) ∈ S is one such element

so that |S〈σ〉| ≥ 1. But p divides this number and hence |S〈σ〉| ≥ p. Therefore the exists at least

one element a ∈ G, a 6= e, with (a, . . . , a) ∈ S so that ap = e. Therefore G has an element of order

p and 〈a〉 is a subgroup of order p.

Cauchy’s theorem is a special case of the first Sylow theorem (there are three) which states that a

group of order pnk, (p, k) = 1, has a subgroup of order pj for all 1 ≤ j ≤ n. Before we can give the

proof, we will need two technical lemmas.

If G is a group, let S denote the set of all subgroups of G and recall that G acts on S by conjugation.

That is, the mapping G×S → S given by (g,H) 7→ gHg−1 makes S a G-set. If H ∈ S, the stabilizer

GH is the subgroup

GH = {g ∈ G : gHg−1 = H}

and is called the normalizer of H in G. We will denote the normalizer of H in G by N(H). Note

that N(H) is the largest subgroup of G in which H is normal, and H is normal in G if and only if

N(H) = G (nice exercises!). Here is the first lemma.

Lemma 1.6.3 If G is a finite group and H ≤ G is a p-group, then

[N(H) : H] ≡ [G : H] (mod p).

Proof. We let H act on G/H, the space of left cosets of H in G, by left translation so that

(h, xH) 7→ (hx)H. The crux of the proof is to determine the fixed points of this action and apply

theorem (1.6.1). We compute

(hx)H = xH ⇐⇒ x−1hxH = H ⇐⇒ x−1hx ∈ H.

Therefore h(xH) = xH for all h ∈ H if and only if x−1hx ∈ H for all h ∈ H if and only if x ∈ N(H).

It follows that the number of fixed points of G/H under H is the number of H cosets in N(H),

and this number is precisely [N(H) : H]. If we note that |G/H| = [G : H], then an application of

theorem (1.6.1) finishes the proof.

The second lemma is really just a corollary of the the previous one. Namely, we have the following.

Lemma 1.6.4 Let H be a p-subgroup of a finite group G. If p divides [G : H], then N(H) 6= H.
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Proof. If p divides [G : H], then lemma (1.6.3) implies that p divides [N(H) : H]. Therefore

[N(H) : H] 6= 1 and hence N(H) 6= H.

We can now state and prove the first Sylow theorem; the main goal of this lecture.

Theorem 1.6.5 (First Sylow Theorem) Let G be a finite group with |G| = pnk, n ≥ 1 and

(p, k) = 1. Then for each 1 ≤ j ≤ n, G has a subgroup Pj of order pj. Moreover, Pj is normal in

Pj+1 for 1 ≤ j < n.

Proof. By Cauchy’s theorem (1.6.2), G has a subgroup P1 of order p. We proceed by induction.

Namely, we will show that if 1 ≤ j < n and G has a subgroup Pj of order pj , then G has a subgroup

Pj+1 of order pj+1. Suppose then that Pj ≤ G has order pj for some j < n. It follows that p divides

[G : Pj ] (why?) and hence p divides [N(Pj) : Pj ] by lemma (1.6.3). Now, Pj is normal in N(Pj)

so that N(Pj)/Pj is a group and our previous remark implies that p divides the order |N(Pj)/Pj |.

Now we apply Cauchy’s theorem (1.6.2) to the group N(Pj)/Pj to find a subgroup K of order p in

N(Pj)/Pj . If η : N(Pj) → N(Pj)/Pj is the quotient map, then η−1(K) ≤ G is a subgroup of G

such that Pj ≤ η−1(K) ≤ N(Pj). It follows that Pj is normal in η−1(K), and moreover, the first

isomorphism theorem implies that |η−1(K)| = pj+1.

One consequence of the first Sylow theorem is that every finite group G has a maximal prime-power

order subgroup for every prime that divides |G|. That is, if |G| = pnk, n ≥ 1, (p, k) = 1, then G has

a subgroup of order pn.

Definition 1.6.6 (Sylow p-subgroup) If G is a finite group with order |G| = pnk, n ≥ 1, (p, k) =

1, then a subgroup of order pn is called a Sylow p-subgroup.

Recall that conjugation by a fixed g ∈ G is an automorphism of the group G so that, in particular,

if P is a Sylow p-subgroup of G, then every conjugate subgroup gPg−1 is also a Sylow p-subgroup.

The next theorem says that we get all Sylow p-subgroups in this way. The proof is an absolutely

beautiful application of group actions!

Theorem 1.6.7 (Second Sylow Theorem) If P and Q are any two Sylow p-subgroups of a finite

group G, then P = gQg−1 for some g ∈ G. That is, any two Sylow p-subgroups of a finite group G

are conjugate.

Proof. Let S = G/P be the set of left cosets of P in G and let Q act on S by left translation so

that a(bP ) = (ab)P for a ∈ Q and b ∈ G. Now Q is a p-group so that theorem (1.6.1)implies that
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|S| ≡ |SQ| (mod p). But |S| = [G : P ] = k is not divisible by p so that |SQ| 6= 0. If bP ∈ SQ, then

abP = bP for all a ∈ Q iff. b−1abP = P for all a ∈ Q iff. b−1ab ∈ P for all a ∈ Q iff. b−1Qb ≤ P .

But |b−1Qb| = |P | so that b−1Qb = P and P and Q are conjugate as desired.

The third (and final!) Sylow theorem provides a method for counting how many Sylow p-subgroups

a finite group G has. You will show in your homework that a Sylow p-subgroup is normal iff. it is

unique. Therefore the following theorem can also be used to find normal subgroups of a group G.

Once again, note how elegant the proof is with the notion of group actions.

Theorem 1.6.8 (Third Sylow Theorem) If G is a finite group such that |G| = pnk, n ≥ 1,

(p, k) = 1, then the number of Sylow p-subgroups of G is congruent to 1 modulo p and divides |G|.

Proof. Let P be a Sylow p-subgroup of G and let S be the set of all Sylow p-subgroups of G. Then

P acts on S by conjugation and theorem (1.6.1) implies that |SP | ≡ |S| (mod p). Now, Q ∈ SP

iff. aQa−1 = Q for all a ∈ P iff. P ≤ N(Q). Of course Q ≤ N(Q) so that Q and P are two Sylow

p-subgroups of N(Q). The second Sylow theorem (1.6.7) implies they are conjugate in N(Q). But

since Q is normal in N(Q), it is only conjugate to itself so that Q = P . It follows that SP = {P}

so that |S| ≡ 1 (mod p) as claimed.

Now let G act on S by conjugation. Again, the second Sylow theorem (1.6.7) implies that there is

only one orbit in S under this action so that |S| = [G : N(P )] where P ∈ S. Therefore |S| (the

number of Sylow p-subgroups of G) is a divisor of |G|.

Example 1.6.9 We will show that no group of order 15 is simple. Recall that a group is simple if

it has no non-trivial normal subgroups. Suppose that |G| = 15 and let P be a Sylow 5-group. We

know P exists by the first Sylow theorem (1.6.5). Moreover, the third Sylow theorem (1.6.8) implies

that the number of such P is of the form 5k + 1 and is a divisor of 15. The only possibility is to

take k = 0 so that there is exactly 1 Sylow 5-group which is necessarily normal in G by the second

Sylow theorem (1.6.7).
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Chapter 2

Symmetry

2.1 The orthogonal group On

The applications of group theory to symmetry are arguably the most exciting and most important

parts of the theory. Indeed, symmetry and symmetrical structures arise in all branches of science

and mathematics so that one can find numerous interesting applications of the work we are about

to undertake. We will focus primarily on symmetry of figures in the Euclidean plane R2, but we

will also partially study some symmetries of 3-dimensional figures in R3 as well. It will turn out

that understanding the mathematics of rotations in R2 and R3 is crucial. We therefore begin our

investigation with a careful treatment of this matter.

The reader is most likely aware that a rotation of the Euclidean plane R2 about the origin through

an angle θ is a linear operator on R2 whose matrix with respect to the standard basis {e1, e2} for

R
2 is given by  cos θ − sin θ

sin θ cos θ


A rotation of R3 is slightly more difficult to describe. Usually, a rotation in 3-space is given by a

pair (v, θ) where v ∈ R3 is a unit vector (the axis of rotation), and θ is a real number that gives the

amount of the rotation through the line spanned by v. Note that there are some subtleties to this

definition. Namely, the distinct pairs (v, θ) and (−v,−θ) represent the same rotation of R3. The

primary goal of this lecture is to give a definition of a rotation in 3-space, and then to show that all

such rotations are linear operators on R3. In fact, they are all special orthogonal operators.
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Recall that a real n × n matrix A is called orthogonal if AAt = In, where At is the transpose of

A and In is the n × n identity matrix. The reader has no doubt proved in an elementary linear

algebra class that if A is an orthogonal matrix over R, then detA = ±1. The set of all orthogonal

n × n matrices forms a subgroup of GLn(R) denoted by On(R) or sometimes just On. This group

is called the orthogonal group. The reader can check that the subset of those A ∈ On satisfying

detA = +1 forms a subgroup called the special orthogonal group. It is denoted by SOn(R) or

just SOn so that

SOn = {A ∈ On : detA = 1}.

We leave it as an exercise for the reader to show that [On : SOn] = 2 and hence SOn is a normal

subgroup of On. Before we can prove that any rotation of R3 is given by multiplication by an element

A ∈ SO3, we will need some facts about the Euclidean inner product (dot product) and isometries

(distance preserving maps). For convenience, we write all vectors X ∈ Rn as column vectors with

respect to the standard basis.

Definition 2.1.1 (Dot product) If X,Y ∈ Rn, then the dot product or Euclidean inner

product of X and Y is the real number

X · Y = XtY = x1y1 + · · ·+ xnyn.

Surprising as it may seem, the dot product is the link between the geometry of the set Rn and the

algebra of the vector space Rn. Specifically, the reader can easily check that for a vector X ∈ R2,

we have

X ·X = x2
1 + x2

2

so that
√
X ·X = |X| is the length of the vector X. The same formula can be taken as the definition

of the length of a vector X ∈ Rn. That is, for X ∈ Rn, we define the length of X to be the scalar

|X| =
√
X ·X. We also define the distance between X and Y to be the length |X−Y | of X−Y .

Now, if X and Y are vectors in R2 or R3, then applying the law of cosines to the triangle with

vertices 0, X and Y gives

X · Y = |X||Y | cos θ

where θ is the angle subtended by the sides X and Y . If X and Y are both non-zero, then this

formula shows that X · Y = 0 iff. θ = π/2. This motivates the following definition.
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Definition 2.1.2 (Orthogonal) Two vectors X and Y in Rn are orthogonal if X · Y = 0. A

set of vectors S = {X1, . . . , Xm} is orthogonal if Xi and Xj are orthogonal for all i 6= j. If, in

addition, we have |Xi| = 1 for all i, then S is called an orthonormal set. An orthonormal set that

is also a basis is called an orthonormal basis.

The following theorem justifies the repetitious use of the term orthogonal. Before we give the

statement and proof, now is a good time to remind the reader that if A is an n × n matrix and ei

is the ith standard basis vector in Rn, then Aei ∈ Rn is the ith column of A.

Theorem 2.1.3 If A is a real n× n matrix, then the following are equivalent.

1. A ∈ On.

2. The dot product is invariant under A. That is, AX ·AY = X · Y for all X,Y ∈ Rn.

3. The columns of A are pair-wise orthogonal unit vectors in Rn.

Proof. ((1) =⇒ (2)) Suppose that A ∈ On so that AtA = In. Then, recalling X · Y = XtY , we

have for all X,Y ∈ Rn,

AX ·AY = (AX)t(AY ) = XtAtAY = XtY = X · Y

so that the dot product in invariant under A.

((2) =⇒ (3)) If the dot product is invariant under A, then in particular we have for each pair of

standard basis vectors (ei, ej),

δij = ei · ej = Aei ·Aej .

Now, ci = Aei is the ith column of A so that we see ci · cj = δij and hence the columns of A form

an orthonormal set {c1, . . . , cn}. In particular, we have that each ci is a unit vector and the ci are

pair-wise orthogonal.

((3) =⇒ (1)) We must show that AtA = In. The ij-entry of the product AtA is computed by

taking the dot product of the ith row of At with the jth column of A. But the ith row of At is the

ith column of A so that, using the notation above, we have that the ij-entry of AtA is ci · cj . If

{c1, . . . , cn} is an orthonormal set, then we see that ci · cj = δij so that AtA = In as desired.

This theorem is the first hint at the relationship between rotations in R3 and orthogonal matrices.

That is, it shows that orthogonal matrices are linear maps that preserve angles between vectors.

Actually, by preserving the dot product, an orthogonal operator preserves distance between vectors
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as well (why?). Putting all of this together, an orthogonal operator is a linear map Rn → R
n that

fixes the origin and preserves the distance and angles between vectors. Our next step is show that

any map Rn → R
n with these properties is given by an orthogonal matrix! Let’s begin with a

definition.

Definition 2.1.4 (Isometry) A map m : Rn → R
n is an isometry or a rigid motion if

|m(X)−m(Y )| = |X − Y |

for all X,Y ∈ Rn. That is m is an isometry if m preserves distance between vectors.

Note that every rotation of R3 is an isometry. We leave it as an exercise for the reader to show that

the composition of isometries is an isometry. Of course the identity 1Rn : Rn → R
n is an isometry.

Every isometry is invertible and its inverse is again an isometry so that the set Mn of all isometries of

R
n form a group under function composition. We usually call the group Mn the group of motions

of Rn or the isometry group of Rn. We will also use the notation Iso(Rn) to denote the isometry

group of Rn. (In fact, we prefer it!)

Theorem 2.1.5 If m : Rn → R
n is a map, then the following are equivalent:

1. The map m is an isometry that fixes the origin.

2. The map m preserves dot product.

3. The map m is given by left multiplication by an n× n orthogonal matrix.

Proof. ((1) =⇒ (2)) If m is an isometry, then for all X,Y ∈ Rn, we have

(X − Y ) · (X − Y ) = |X − Y |2 = |m(X)−m(Y )|2 = (m(X)−m(Y )) · (m(X)−m(Y )).

Letting Y = 0 shows that X ·X = m(X) ·m(X). If we expand both sides of the above equality and

cancel X ·X with m(X) ·m(X) and Y · Y with m(Y ) ·m(Y ), we see that X · Y = m(X) ·m(Y ) so

that m preserves dot product.

((2) =⇒ (3)) First, as a special case, suppose that m preserves dot product and m(ei) = ei for all i.

Then for any X ∈ Rn,

xi = X · ei = m(X) ·m(ei) = m(X) · ei

so that X = m(X) and m is the identity. Now, if m preserves dot product, we let

B = {m(e1), . . . ,m(en)}
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and note that B is an orthonormal basis (why?). If A = [B], then A is an orthogonal matrix by

theorem (2.1.3) and hence A−1 = At is also orthogonal and therefore preserves dot product. It

follows that the composition A−1m preserves dot product and maps ei to ei for all i. Therefore, by

the special case proved above, A−1m is the identity on Rn so that A = m is multiplication by an

orthogonal matrix.

((3) =⇒ (1)) Suppose that m is linear with an orthogonal matrix A representing m in the standard

basis. Then m(0) = 0 since m is linear. Moreover, theorem (2.1.3) implies that m preserves dot

product and hence distance so that m is an isometry.

Definition 2.1.6 (Rotation) A map ρ : R3 → R
3 is a rotation about the origin if ρ is an

isometry fixing the origin, ρ fixes a unit vector X ∈ R3 and the restriction of ρ to the plane orthogonal

to the line spanned by X is a rotation.

We can (finally) state our main theorem.

Theorem 2.1.7 The rotations about the origin in R2 (respectively R3) are in one to one correspon-

dence with elements of the special linear group SO2(R) (respectively SO3(R)).

We have already shown one direction of the theorem (why?). However, we still need one more

technical lemma before we can give a concise proof. We omit the proof of the lemma, as it is written

in Artin, and we do not have a “better” proof.

Lemma 2.1.8 If A ∈ SO3(R), then A has an eigenvalue λ = 1.

Proof of theorem (2.1.7) If ρ : R3 → R
3 is a rotation, then ρ is an isometry that fixes the origin so

that theorem (2.1.5) implies that ρ is given by an orthogonal matrix A. It follows that detA = ±1.

Now, the determinant is an integer valued continuous function of the angle of rotation, and hence

constant. But the identity is the matrix of the 0 rotation so that this constant value is +1. Therefore

A ∈ SO3(R). (We remark that the same argument applies to R2, or Rn for any n.)

For the converse, we must specialize to the cases n = 2, 3. If A ∈ SO2(R), let v1 = Ae1 and let ρ be

the rotation of R2 that takes e1 to v1. Let B be the matrix of ρ and note that B ∈ SO2(R) so that

C = A−1B ∈ SO2(R). Moreover Ce1 = e1. Now Ce2 is a unit vector orthogonal to e1 so it is either

e2 or −e2, the latter being ruled out because detC = 1. Therefore C = I2 and A = B is a rotation.

If A ∈ SO3(R), then lemma (2.1.8) shows that A has an eigenvector X with an eigenvalue 1.

Moreover, theorem (2.1.5) implies that A is an isometry that fixes the origin. It remains to show
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that A acts as a rotation in the plane P orthogonal to the line spanned by X. Let X2 and X3 be any

two orthogonal unit vectors in P and let X = X1 so that B = (X1, X2, X3) is an orthonormal basis

for R3. If P = [B]−1, then A′ = PAP−1 represents the same linear operator as does A. Moreover,

A′ ∈ SO3(R) (why?). Now, X1 is an eigenvector with eigenvalue 1 for A′ as well, and moreover,

since A′ is orthogonal, A′(P) = P so that the matrix for A′ with respect to the basis B has the form 1 0

0 B

 .
Note that the columns of B are orthogonal unit vectors in P so that B ∈ O2 is orthogonal. Moreover

detB = detA′ = 1 so that B ∈ SO2 is a rotation as desired.

We end this lecture with a remark on isometries that do not fix the origin. If b ∈ Rn is a fixed

vector, then the map tb : Rn → R
n defined by tb(X) = X + b is an isometry (exercise). If b 6= 0,

then tb does not fix the origin. The following theorem is remarkable!

Theorem 2.1.9 If m is an isometry of Rn, then there exist unique A ∈ On(R) and b ∈ Rn such

that m(X) = AX + b for all X ∈ Rn.

Proof. Let b = m(0) and note that t−bm is an isometry fixing the origin so that A = t−bm ∈ On(R)

by theorem (2.1.5). If we apply tb to both sides of this equality, we are done.

2.2 Symmetry of figures in R2

The purpose of this lecture is to describe what a mathematician means when he or she speaks about

“symmetry”. We also will begin a careful study of the isometry group Iso(R2) of the Euclidean

plane.

The word “symmetry” is common in everyday language, and the usage of the term in modern

mathematics encompasses this common meaning and more. To begin, if S is a set, then by a

transformation of S, a modern geometer means a bijection S → S, and the permutation group

A(S) is called the (full) transformation group. One of the fathers of contemporary geometry was

the German mathematician Felix Klein (1849-1925). He gave the following definition of a geometry

in 1872.

Definition 2.2.1 (Geometry) A geometry is the study of those properties of a space (set) that

remain invariant under some fixed subgroup of the full transformation group.
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This definition is actually not quite as inclusive as the current definition of a geometry, but it will

serve our purposes. In the next few lectures, we are going to study symmetries of figures in the

Euclidean plane R2 and Euclidean 3-space R3. The definition of symmetry that we will give uses

the language of geometry. We will therefore content ourselves to illustrating Klein’s definition of

geometry it applies to classical Euclidean geometry, our subject of study. However, the reader should

keep in mind that any notion of a geometry can be defined in this way.

To give the following definition, we do not need that n = 2 or 3. Therefore let S = R
n, n ≥ 1,

and consider the subgroup Iso(Rn) of A(Rn). That is, we choose our fixed subgroup of the full

transformation group A(Rn) to be the subgroup of distance preserving maps. Then the Euclidean

geometry of Rn is the study of those properties of Rn that are left invariant under Iso(Rn). We

have seen that the dot product, and hence angles between vectors, is one such property. There are

others such as area and volume for example.

From now on, we specialize to the case n = 2. To maintain the geometrical spirit of our work, will

call subsets of R2 figures. Usually, it is possible to give a mathematical description of the figures

we will be interested in. That is, we can specify the set of points (x, y) ∈ R2 that are contained in

the figure. The degree of precision is often unnecessary, and we will usually just give a figure in R2

by drawing it. Here is the main definition of the lecture.

Definition 2.2.2 (Symmetry of a plane figure) If F is a figure in R2, then a symmetry of F

is an element m ∈ Iso(R2) such that m(F ) = F . The set of all symmetries of F form a subgroup of

Iso(R2) called the symmetry group of the figure.

In other words, a symmetry of F is a distance preserving map m : R2 → R
2 that sends F onto itself.

We often imagine m as a motion of the plane (an orthogonal motion followed by a translation in

fact!), so that a symmetry of F is a motion of the plane that carries F onto itself. We will see in the

next lecture that the group Iso(R2) acts on the plane in a natural way, and the symmetry group of

a figure is nothing more that the isotropy subgroup of the figure under this Iso(R2) action. Before

we begin our careful investigation of this group action, let us look at some examples of figures in the

plane, and informally discuss their respective symmetry groups. Symmetries of figures in the plane

are classified as having either reflective, rotational, translational or glide symmetry. Sometimes

a figure can have all of these types of symmetries simultaneously! For example, the hexagon and

heart shape shown here have rotational and reflective symmetries respectively.
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Rotational and reflective symmetry. Reflective symmetry only.

Figure 2.1: The hexagon and heart shape shown here are examples of figures in the plane R2.

The question of determining the symmetry groups of these figures is the question of finding all

isometries of the plane Iso(R2) that map these figures to themselves. In the case of the hexagon,

the symmetry group has exactly 12 elements: 6 rotations and 6 reflections. In fact, this symmetry

group is isomorphic to the dihedral group D6. The symmetry group of the heart shape has just 2

elements and is therefore isomorphic to Z2.

Note that the hexagon has reflective symmetry as well. Neither figure has any translational sym-

metry, and hence no glide symmetry either. A glide symmetry in a figure is a composition of a

reflective symmetry with a translation. The following figure is an example of a planar figure with

glide symmetry. In this picture, the reader should imagine that the figure repeats infinitely in both

directions.

The figure has an infinite symmetry group.

Figure 2.2: The figure shown here has glide symmetry. We can reflect the picture in the horizontal

line and then shift it to the right. This is the glide reflection. Note that the composition of the glide

reflection with itself is a non-zero translation. It follows that the symmetry group of this figure is

infinite. (why?)

It is possible that a figure in the plane has a trivial symmetry group. That is, it is possible that

the only element of the isometry group that maps the figure to itself is the identity element. If this is

the case, we (somewhat incorrectly) say that the figure has no symmetry or is asymmetrical. It is
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easy to draw asymmetrical figures. For example, the Roman alphabet contains many asymmetrical

letters.

The roman letter "F" has no symmetry.

Figure 2.3: Paradoxically, if a figure has the trivial subgroup for its symmetry group, we say that

the figure has no symmetries.

In the next few lectures, we are going to carefully study the possible symmetries of figures in the

plane R2. We have already said that each such figure has a symmetry group - a subgroup of Iso(R2).

We will therefore begin our investigation of symmetries with a thorough investigation of the possible

subgroups of Iso(R2). We conclude this lecture with a remark on creating figures with a specified

symmetry group. We have mentioned that the isometry group R2 acts on the plane by applying the

isometry. Therefore if G is a subgroup of Iso(R2), and F is a subset of the plane, then the union of

the sets in the orbit of F under the action of G is a figure with symmetry group G by definition. In

other words, you can draw any figure in the plane, and then look at the action on G on that figure

to determine a figure with symmetry group G. The following pictures illustrates this idea.

Figure 2.4: This figure was created by letting the dihedral group D8 act on the curve shown on the

right. The center of the rotations was chosen to be the lower end point of the curve and the line of

reflection was chosen to be horizontal. The symmetry group of the figure on the left is therefore D8.

To create nice looking figures with this process, it is usually best to begin with an asymmetrical

figure. However, you can combine symmetries in your beginning figure with those in the group G to

create very complex symmetrical patterns in the end result. The Artist M.C. Escher was a master
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of this idea. We end this lecture some figures taken from The World of M.C. Escher, (Harry N.

Abrams, Inc., New York). The first illustrates an action of Z×Z on R2. Can you find a fundamental

region?

Figure 2.5: The symmetry group of this figure has two independent translations. It has no rotational

nor reflective symmetry. The symmetry group is isomorphic to Z× Z.

The figure in Figure 2.6 has a more complicated symmetry group. In addition to two independent

translations, the symmetry group of this figure contains rotations of order 3. One of the consequences

of our work will be that if the symmetry group of a figure contains rotations about distinct points,

then it is infinite. Therefore the symmetry group of the figure in Figure 2.6 is infinite. We will also

be able to show that no figure such as Figure 2.6 can have rotations of order 5.

We end with a figure (2.7) that illustrates the very same ideas that we have been discussing, but

in another geometry! In terms of distance, the Euclidean geometry is given by the metric ds2 =

dx2 + dy2. This just means that the distance between two points in the plane is the sum of the

squares of the changes in the x and y coordinates. The hyperbolic plane H2 is modeled on the

open upper half-plane

R
2
+ = {(x, y) ∈ R2 : y > 0}

but with the metric ds2 = (1/y2)(dx2 + dy2). By definition, hyperbolic geometry is the study

of those properties of H2 left invariant by the isometry group of H2. This isometry group is not

the same as the isometry group for Euclidean geometry. It is, however, generated by reflections in

“hyperbolic lines”. You can use linear fractional transformations to map the half-plane model of H2

into the interior of the unit disc to obtain another model of H2. The latter model is usually referred
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Figure 2.6: In addition to two independent translations, the symmetry group of this figure contains

rotations of order 3. If you look carefully, you can see the artist’s hexagonal grid on which the work

is based.

to as the Poincaré disc. Figure 2.7 shows a figure in the Poincaré disc. It was generated by letting

a certain subgroup of the hyperbolic isometry group act on one of the fundamental regions.

2.3 The isometry group of R2

We already know many facts about the group Iso(Rn) of isometries of Rn. The purpose of this

lecture is to classify isometries of the plane R2 as well as give a set of generators for this group that

facilitate computation. Recall that Iso(R2) is a subgroup of A(R2), the full transformation group

of the plane. The plane R2 is a A(R2)-set under the natural action (see Example 1.1.2(2)), and

therefore R2 is an Iso(R2)-set. To be specific, we have (m,X) 7→ m(X) for all m ∈ Iso(R2) and all

X ∈ R2.

Recall that if m is an isometry of R2, then there exist unique elements A ∈ O2 and b ∈ R2 such

that m(X) = AX + b for all X ∈ R2. That is, m is given by an orthogonal operator followed by a

translation. The uniqueness of A allows us to make the following definition.

Definition 2.3.1 An isometry m is orientation preserving if detA = 1 and orientation re-

versing if detA = −1 where A ∈ O2 satisfies m = tb ◦A.
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Figure 2.7: The artist M.C. Escher had a deep understanding of symmetry and actions of the

isometry group on the plane. The original piece of art was done as a two color wood cut in 1960.

It is entitled Circle Limit IV. As this picture shows, Escher was familiar with hyperbolic isometry

groups.

Intuitively, m is orientation reversing if it flips the plane over, and orientation preserving if it does

not flip the plane over. The proof of the following proposition is left as an exercise for the reader.

Proposition 2.3.2 The map Iso(R2)→ {±1} that maps m to 1 if m is orientation preserving and

−1 if m is orientation reversing is a homomorphism and hence the orientation preserving motions

form a normal subgroup of Iso(R2).

We can further classify motions of the plane if we look at fixed point behavior.

1. Translations X 7→ X + b, b 6= 0. No fixed points.

2. Rotations about a point. Exactly one fixed point.

3. Reflections in a line l. Fixes every point on l.

4. Glide reflections. No fixed points.

It is absolutely remarkable that this list is complete! That is, every rigid motion of the plane is one

of the four types listed above. Before we state and prove this theorem, let us define a convenient

set of generators for the group Iso(R2). This is the exact analog of choosing our generators x and

y for the dihedral groups Dn. In this case, the group Iso(R2) is infinite and we will need infinitely

many generators. We will work in the standard basis, writing vectors as column vectors. We then
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choose as generators the translations, rotations about the origin and the reflection in the e1-axis.

For notation, if a ∈ R2 is a non-zero vector, and θ ∈ R is a real number, then we let

1. ta : R2 → R
2, ta : x 7→ x+ a =

 x1 + a1

x2 + a2

 denote translation by a;

2. ρθ(x) =

 cos θ − sin θ

sin θ cos θ

 x1

x2

 denote the rotation by θ radians about the origin;

3. r(x) =

 1 0

0 −1

 x1

x2

 = R

 x1

x2

 =

 x1

−x2

 denote the reflection in the e1-axis.

Proposition 2.3.3 The elements {ta, ρθ, r : 0 6= a ∈ R2, θ ∈ R} generate the group of isometries

Iso(R2).

Proof. If m ∈ Iso(R2), then we know m = ta ◦A for some A ∈ O2. If detA = 1, then A is a rotation

by theorem (2.1.7) so that m = taρθ for some θ. If detA = −1, then detAR = 1 so that AR = ρθ

for some θ. It follows that mr = taAR = taρθ. But r2 = 1 so that we have m = taρθr.

We will use these identities to compute in the group Iso(R2). The verification of each of these

identities is left to the reader.

tatb = ta+b, ρθρϕ = ρθ+ϕ, r
2 = 1,

ρθta = ta′ρθ, where a′ = ρ(a),

rta = ta′r, where a′ = r(a),

rρθ = ρ−θr.

These identities, along with the following proposition will allow us to easily make computations in

the group Iso(R2).

Proposition 2.3.4 If m ∈ Iso(R2), then the expression m = taρθr
j, j = 0 or j = 1, is unique.

Proof. Suppose that m = taρθr
i = tbρϕr

j . Then since m is either orientation preserving or

reversing according to whether i = 0 or i = 1, we see that i = j and we have taρθ = tbρϕ. It follows

that ta−b = ρϕ−θ. But a translation is not a rotation unless both are the identity so that we must

have a = b and θ = ϕ.

We can now state and prove the main theorem of this lecture.
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Theorem 2.3.5 If m ∈ Iso(R2) is an isometry of the plane, then m is the identity, a translation

ta, a rotation about some point, a reflection in a line or a glide reflection.

Proof. If m ∈ Iso(R2), then m either preserves orientation or it does not. Suppose that m does

preserve orientation, but m is not a translation. We will show that m is a rotation about some

point. Write m = taρθ and let l be the line through the origin, perpendicular to the direction of a

(see Figure 2.8). If we place a sector with angle θ so that l bisects the sector as shown, then the

fixed point P is determined by placing the vector a in the sector as shown.

a

theta

a

P

Figure 2.8: Since m = taρθ, this diagram shows that the point ρθ(P ) will be translated to P under

ta and hence is fixed by m.

Now, a rigid motion that fixes a point is an orthogonal operator and, since m preserves orientation,

it must be a rotation by theorem (2.1.7). Therefore we have shown that if m is an orientation

preserving motion, then m is a translation or a rotation (we consider the identity as a rotation

through zero radians).

Now suppose that m is orientation reversing so that m = taρθr. First, we note that the product

ρθr = r′ is a reflection in the line through the origin at an angle of θ/2 with the positive e1-axis (see

Figure 2.9).

l

axis

Figure 2.9: In this diagram, the line l is taken onto the dotted line under the reflection r. The

rotation ρθ then maps r(l) back to l.
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Now, if we change basis so that this new line is the line spanned by the first basis vector, then the

reflection r′ has has the same matrix as r with respect to this basis. Now, ta is still a translation

in this new coordinate system (the coordinates of a have changed, but since we have not used any

notation for the old coordinates, we will denote the new ones by a = (a1, a2)t). Therefore, in the

new coordinate system we have m = tar and for any x = (x1, x2)t, we have

m(x) =

 x1 + a1

−x2 + a2

 .
Now, the reader should verify that the line x2 = (1/2)a2 is invariant under m. Moreover, if we restrict

m to this line we see that the restriction is the translation (x1, (1/2)a2)t 7→ (x1 + a1, (1/2)a2)t so

that m is a glide reflection.

In the remainder of this lecture, we want to investigate two important subgroups of Iso(R2). Let T

denote the subgroup consisting of all translations and let O denote the subgroup of isometries that

fix the origin. If we choose a basis for R2, then each element of O determines a matrix in O2(R)

by theorem (2.1.5). This correspondence is an isomorphism O
∼−→ O2 and we use this isomorphism

to identify O2 with the subgroup O. Also, if we let T denote the subgroup of Iso(R2) consisting of

all translations, then the map R2 → T given by a 7→ ta is an isomorphism since, as we have seen,

ta+b = ta + tb. The subgroups O and T are called the subgroups of orthogonal operators and

translations respectively. We leave it as an exercise for the reader to show that of P is any point in

the plane, the stabilizer of P under the action of Iso(R2) is isomorphic to O2. It is no accident that

the stabilizer of any point is isomorphic to the subgroup of orthogonal operators O. In particular,

we have the following proposition.

Proposition 2.3.6 If P ∈ R2 is any point in the plane and O′ is the stabilizer of P , then O′ =

tpOt
−1
P . That is, the stabilizer of the origin is conjugate to the stabilizer of P for all P ∈ R2.

Proof. Let ρθ be a rotation about the origin through the angle θ and note that ρ′θ = tP ρθt
−1
P is an

orientation preserving motion that fixes the point P . Therefore theorem (2.3.5) implies that ρ′θ is a

rotation about P . Similarly we see that r′ = tP rt
−1
P is a reflection in the line through P , parallel to

the “x-axis”. Since every element of O2 has the form ρθ or ρθr, we see that tPOt−1
P ⊂ O′. However,

theorem (2.1.5) implies that every element of O′ is an orthogonal operator (with the origin at P ) so

that every element of O′ has the form ρ′θ or ρ′θr
′ and hence tPOt−1

P = O′.

We leave the proof of the next proposition to the reader.
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Proposition 2.3.7 The map Iso(R2)→ O defined by taρθrj 7→ ρθr
j, j = 0, 1, is a homomorphism

with kernel T .

It follows immediately from this proposition that T is a normal subgroup of Iso(R2) - it is a kernel!

Moreover, since every element m ∈ Iso(R2) can be written in the form m = taρθr
j , j = 0, 1, we

see that Iso(R2) = TO. Finally, note that T ∩ O = {1R2}. We leave the reader with a question: is

Iso(R2) ∼= T ×O?

2.4 Finite subgroups of Iso(R2)

The purpose of this lecture is to investigate the possible symmetries of bounded figures in the plane

R
2 such as those shown previously in Figure 2.1 or Figure 2.3. A bounded figure can not have any

translational symmetry (why?), and hence the symmetry groups of such figures may be finite. We

therefore begin our investigation with a look at the possible finite subgroups of the isometry group

Iso(R2). We will achieve total success! That is, we will completely classify all finite subgroups of

Iso(R2) up to isomorphism. It turns out that the following theorem is the key that unlocks all

information about finite subgroups of isometries of the plane. The proof given here (and in Artin)

is a beautiful example of the interaction between algebra and geometry. To prove the theorem, we

will need a lemma about the centroid of a finite set of points in the plane. If S = {s1, . . . , sn} ⊂ R2,

then the centroid of S is the point

p =
1
n

(s1 + s2 + · · ·+ sn)

where the sum is vector addition in R2. We will need the following lemma.

Lemma 2.4.1 If S = {s1, . . . , sn} ⊂ R2 and m ∈ Iso(R2) is an isometry, then m(p) is the centroid

of the set m(S) = {m(s1), . . . ,m(sn)}. That is, an isometry takes a centroid to a centroid.

Proof. Since every isometry m is a product taρθrj , j = 0, 1, it suffices to show the lemma for these

generators. For ta, the centroid of ta(S) is

1
n

((s1 + a) + (s2 + a) + · · ·+ (sn + a)) =
1
n

(s1 + s2 + · · ·+ sn) + a = p+ a = ta(p).

If m is a rotation or reflection, then m is a linear operator so that we can compute the centroid of

m(S) as
1
n

(m(s1) +m(s2) + · · ·+m(sn)) = m

(
1
n

(s1 + s2 + · · ·+ sn)
)

= m(p).
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Theorem 2.4.2 If G is a finite subgroup of Iso(R2), then there exists a point P ∈ R2 such that

g(p) = p for all g ∈ G. That is, G has a fixed point.

Proof. Let s ∈ R2 be any point in the plane and let Os denote the orbit of s under the action of

G. For notation, let

Os = {s1, s2, . . . , sn}

with say s1 = s. Note that this orbit is also a G-set. That is, if sj ∈ Os and g ∈ G, then g(sj) ∈ Os.

In fact, each g ∈ G is a permutation of Os. If p is the centroid of Os, then the lemma shows that

g(p) is the centroid of g(Os) for all g ∈ G. But g is a permutation of Os so that g(Os) = Os for all

g ∈ G. It follows that g(p) = p for all g ∈ G and hence p is a fixed point.

Corollary 2.4.3 If G is a subgroup if Iso(R2) and G contains a non-zero translation, then G is

infinite.

Corollary 2.4.4 If G is a subgroup if Iso(R2) and G contains rotations about two distinct points,

then G is infinite.

Since every finite subgroup G of Iso(R2) fixes a point, theorem (2.1.5) implies that G is a subgroup

of orthogonal operators. If we change coordinates, we may assume without loss of generality that

G is a subgroup of the orthogonal group O2. We therefore turn our attention to finding all finite

subgroups of the orthogonal group O2. The following theorem is the complete classification we are

after.

Theorem 2.4.5 If G is a finite subgroup of O2, then G is isomorphic to a cyclic group Zn for some

n or G is isomorphic to a dihedral group Dn for some n.

Proof. We consider two cases. First, suppose that G contains only rotations. Since G is finite,

there is a smallest 0 < θ such that ρθ ∈ G. We claim 〈ρθ〉 = G. If ρϕ ∈ G, with 0 < ϕ, then there

is an integer m ≥ 1 with mθ ≤ ϕ and mθ + β = ϕ with 0 ≤ β < θ. Now, ρϕ, ρθ ∈ G implies that

ρβ = ρϕ−θ ∈ G and hence β = 0 since β < θ. It follows that ρϕ = ρmθ and our claim is established.

Therefore, if G contains only rotations, G = 〈ρθ〉 is cyclic and hence G is isomorphic to Zn for some

n.
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In the second case, G contains a reflection r′. By changing coordinates, we may assume that r′ = r

is a reflection in the x axis. By the first part of the proof, the subgroup of rotations in G is cyclic of

order n, and is generated by an element ρθ, where θ is the smallest positive angle of any rotation in

G. Clearly the subgroup 〈ρθ, r〉 of G is isomorphic to Dn with the isomorphism x 7→ ρθ and y 7→ r,

and this subgroup contains all of the rotations. If g ∈ G is not a rotation, then g = ρϕr for some

ϕ. Therefore gr = ρϕ ∈ G so that ρϕ = ρmθ for some m. It follows that g ∈ 〈ρθ, r〉 and hence

G = 〈ρθ, r〉. Therefore G is isomorphic to Dn.

2.5 Discrete subgroups of Iso(R2)

In the previous lecture, we were able to completely classify all finite subgroups of Iso(R2). Namely,

we saw that any such group is isomorphic to either a finite cyclic group Zn or a dihedral group

Dn. In the current lecture, we wish to extend our classification of subgroups of Iso(R2) to a class

that includes the symmetry groups of unbounded figures like Figures 2.2 and 2.5. Geometrically,

we want to classify doubly infinite patterns in the plane, or “wall paper patterns”. In turns out,

that to be successful, we must restrict our attention to subgroups that do not contain arbitrarily

small translations or rotations. Certain figures in the plane such as straight lines and circles admit

translations and rotations respectively through arbitrarily small lengths. If we forbid our patterns

from containing such figures, then we can completely classify the corresponding symmetry groups.

Here is the formal definition.

Definition 2.5.1 (Discrete subgroup) A subgroup G of the isometry group Iso(R2) is called dis-

crete if there exists a positive number ε > 0 such that

1. For every non-zero vector a such that ta ∈ G, |a| ≥ ε.

2. For every non-zero θ such that G contains a rotation through θ about some point, then |θ| ≥ ε.

This definition is just the mathematically precise way of saying that a discrete subgroup G does not

contain arbitrarily small translations or rotations.

The key to classifying discrete subgroups of Iso(R2) is to look at translation group T and the

orthogonal group O ∼= O2. Recall that the translation group T is the subgroup of Iso(R2) of all

translations and, if we choose coordinates for R2, the map a 7→ ta is an isomorphism R
2 → T . Also

recall that the map Iso(R2) → O given by taρθr
j 7→ ρθr

j is a homomorphism onto O with kernel
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T . If G is a discrete subgroup of Iso(R2), then we will use T and O to define two very important

subgroups as follows:

First, we define the translation group to be the subgroup of R2 given by

LG = {a ∈ R2 : ta ∈ G}.

Note that the isomorphism T → R
2 maps T ∩G onto LG. We leave it as an exercise for the reader

to show that any subgroup of a discrete group G is also discrete. It follows that T ∩ G is discrete

and hence the translation group LG is a discrete subgroup of R2. We will be able to completely

classify such subgroups into three types.

Next, we let G denote the image of G under the homomorphism Iso(R2) → O, and we call G the

point group. Here is the key relationship we’re after.

Proposition 2.5.2 If G is a discrete subgroup of Iso(R2) with translation group LG and point group

G, then

G ∼= G/(T ∩G).

Proof. Apply the first isomorphism theorem to the map G → O (the restriction to G of the map

Iso(R2)→ O to G defined above). That is, this map is onto G by definition and, since the kernel of

Iso(R2)→ O is T , the kernel of the restriction is T ∩G.

Now, by virtue of the previous proposition, a discrete subgroup G of Iso(R2) determines a discrete

subgroup LG of R2 and a discrete subgroup G of O. Therefore, if we want to classify discrete

subgroups of Iso(R2), then we should begin by classify discrete subgroups of R2 and O. This is what

we will now do. Lets begin with the translations.

Theorem 2.5.3 If L is a discrete subgroup of R2, then exactly one of the following three cases

holds.

1. L = {0} is the trivial group.

2. L = Za, 0 6= a ∈ R2, and hence L is isomorphic to Z.

3. L = Za + Zb, a, b ∈ R2 are both non-zero and (a, b) is linearly independent, hence L is

isomorphic to Z× Z.

Proof. Let L be a discrete subgroup of R2. The main idea of the proof is to find a minimal (in the

sense of length) vector in L in some direction and then consider two cases: L is contained in the
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line through this vector or not. By a minimal vector, we mean a vector a ∈ L such that |a| ≤ |b| for

all b ∈ L. To establish the existence of such a minimal vector, we will need to borrow a tiny bit of

analysis.

First, recall that since L is discrete, there is a real number ε > 0 such that |a| ≥ ε for all non-zero

a ∈ L. Therefore if a, b ∈ L are distinct, then a − b ∈ L since L is a subgroup so that |a − b| ≥ ε.

Therefore elements of L are not arbitrarily close to each other. Next, we note that a bounded

discrete subset of R2 (Rn actually) is finite. To see this, we can break out some heavy analysis and

note that since our set is bounded, it is contained in a closed ball B about the origin. Since B is

closed and bounded, the Heine-Borel theorem implies that B is compact. Therefore if our discrete

subset of B was infinite, it must have a limit point in B. It follows that points in L are arbitrarily

close to this limit point, and hence arbitrarily close to each other, contrary to the first statement of

this paragraph. Finally, we claim that a discrete subset of R2 contains a vector a of minimal length.

To see this, let b ∈ L be arbitrary and note that the closed ball B of radius |b| is bounded. Therefore

B ∩L is finite and non-empty since b ∈ B ∩L. Now, of the finitely many b ∈ B ∩L, we choose one,

say a, of minimal length. Clearly then |a| ≤ |b| for all b ∈ L.

We can now proceed with the algebraic portion of the proof. If L = {0}, we’re done. Otherwise

there exists a non-zero vector a ∈ L and the previous paragraph implies we may assume that a has

minimal (positive) length. We now consider the two cases.

Suppose that every element of L is on the line spanned by a. Then given b ∈ L, we have b = αa for

some real number α. Write α = n+ r where n ∈ Z and 0 ≤ r < 1. Then we have b = αa = na+ ra

so that b− na = ra ∈ L. But |ra| = r|a| < |a| so that we must have r = 0 and hence b = na ∈ Za.

It follows that L ⊂ Za and hence L = Za, and hence L ∼= Z.

Now, if every element of L is not on the line through a, then we must have a vector b ∈ L such that

(a, b) is linearly independent. Let (a′, b′) be an arbitrary linearly independent set with a′, b′ ∈ L.

Choose a ∈ L on the line through a′ so that a has minimal (positive) length and let P ′ denote the

parallelogram with vertices at 0, a, b′ and a+ b′ (see figure).

The argument given in case 1 shows that the intersection of the line through a with L is precisely

Za. The parallelogram P ′ together with its interior is a bounded subset that intersects L and hence

there at most finitely many points of L in P ′. Of all such points, we choose b ∈ P ′ ∩ L so that b

has the smallest positive distance to the line spanned by a. Let P denote the parallelogram with

vertices at 0, a, b and a+ b. We claim that there are no points of L in the interior of P . To see this,
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0 a

b’ a+b’
P’

b a+b
P

Figure 2.10: If we choose b closest to the line spanned by a, then the parallelogram P will not

contain any point of L in its interior.

first note that if c ∈ P ∩ L, and c is not a vertex of P , then c must either be on the line segment

[0, a] or [b, a+ b]. Otherwise, the points c and c−a are closer to the line spanned by a than is b, and

one of these two points lies in P ′. Next, we rule out the segment [0, a] since a is the minimal length

element of L on the line spanned by a. Finally, if c were on the segment [b, a + b], then b − c ∈ L

and b− c is on [0, a], a contradiction.

So, in the case that L contains linearly independent vectors (a′, b′), we have found independent

vectors a, b ∈ L such that the only elements of L contained in the parallelogram P spanned by a

and b are the vertices 0, a, b and a + b. We claim that L = Za + Zb. Clearly Za + Zb ⊂ L since

a, b ∈ L. Now let v ∈ L be arbitrary. Since a and b are linearly independent, (a, b) is a basis for

R
2 and hence there are unique real numbers α, β ∈ R such that v = αz + βb. Write α = n+ r and

β = m+ s where n,m ∈ Z and 0 ≤ r, s < 1. We have

v = αa+ βb = na+mb+ ra+ sb

so that v−na−mb = ra+ sb ∈ L. However, ra+ sb ∈ P so that we must have r = s = 0 and hence

v = na+mb ∈ Za+ Zb. It follows that L = Za+ Zb.

Now, Za and Zb are normal subgroups of L, and since (a, b) is linearly independent, Za∩Zb = {0}.

It follows that L ∼= Z× Z and the proof is complete.

To get the idea of why this theorem is useful in our classification, we let G be any discrete subgroup

of Iso(R2) and note that this theorem implies that the translation group LG is isomorphic to one of

three groups: 0, Z or Z× Z. Therefore we have at least classified discrete groups into three classes.

Usually, an discrete subgroup of isometries is called a rosette if LG = 0, a frieze if LG = Z and a

wall pattern if LG = Z×Z. That is, if F is some figure in the plane with discrete symmetry, then

the symmetry group of F is a rosette if F has no translational symmetry (Figure 2.4 for example),

the symmetry group is a frieze if it contains translations, but they are all parallel (Figure 2.2 for

example), and it is a wall pattern if it contains translations in all sorts of directions (Figure 2.5
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for example). Each of these types of isometry groups can be further classified by looking at the

corresponding point group G.

Since the point group G is a subgroup of the group of orthogonal transformations, every element of

G is either a rotation ρθ or a reflection in the x-axis followed by a rotation ρθr. Now, ρθ ∈ G if and

only if taρθ ∈ G for some translation ta. Recall that the motion taρθ is a rotation through the angle

θ (possibly zero) about some point in the plane. Also, ρθr ∈ G if and only if taρθr ∈ G for some

translation ta, and the motion taρθr is a reflection or a glide reflection. Now, if G is discrete, then it

contains no arbitrarily small rotations nor translations so that we see that G is discrete as well. We

therefore want to classify discrete subgroups of the orthogonal group O. The following proposition

states that, in fact, we have already done so!

Proposition 2.5.4 A discrete subgroup of the group O of orthogonal transformations is finite.

Proof. Exercise.

If we couple this proposition with the classification of finite subgroups of O given in the last lecture,

then we have the following corollary.

Corollary 2.5.5 If G is a discrete subgroup of O, then G is isomorphic to a cyclic group Zn or a

dihedral group Dn for some positive integer n.

Recall that the goal of this lecture is to classify discrete subgroups of the isometry group Iso(R2). So

far, we have seen that each such subgroup has a translation group that is either trivial, isomorphic

to Z, or isomorphic to Z × Z. Moreover, we know each such group has a point group G that is

isomorphic to a finite cyclic group or a dihedral group. This is half of the classification we seek

in the sense that we know two discrete subgroups are different if they have different translation or

point groups. It remains to show how to reconstruct G from LG and G. The following theorem is

the key to the relationship between the point group G and the translation group LG.

Theorem 2.5.6 Let G be a discrete subgroup of Iso(R2) with point group G and translation group

LG. Then for all g ∈ G and all a ∈ LG, g(a) ∈ LG. That is the point group G is a subgroup of the

symmetry group of LG, considered as a subset of the plane R2.

Proof. Let ϕ : G → G denote the restriction of the projection ψ : Iso(R2) → O to G so that

G = ϕ(G) by definition. Therefore, given g ∈ G, we may choose g ∈ G with ϕ(g) = g. Since

a ∈ LG, we have ta ∈ G so that the conjugate gtag−1 ∈ G. We claim that gtag−1 = tg(a) and hence
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g(a) ∈ LG as desired. To establish our claim, we write g = tbρθ or g = tbρθr, whatever the case may

be, so that g = ρθ or g = ρθr respectively. In the first case, we compute

gtag
−1 = tbρθtaρ−θt−b = tbtρθ(a)ρθρ−θtb = tρθ(a),

and tρθ(a) = tg(a) as desired. Similarly one handles the case g = tbρθr.

To illustrate how this theorem further classifies discrete subgroupsG, let us consider the case LG = Z.

Here, all translations ta ∈ G are parallel, or equivalently, the vectors a ∈ LG all lie on a single line.

It follows that any rotation in G must have order 1 or 2 since it must map this line to itself.

Similarly, any lines of reflection must be this line, or perpendicular to it. A careful investigation of

the possibilities (which we will not do) shows that there are exactly 7 distinct possible figures with

such symmetry groups. That is, there are exactly 7 distinct frieze patterns.

The following theorem gives the possible point groups of discrete subgroups G ≤ Iso(R2) when LG

isomorphic to Z × Z. It is usually referred to as the crystallographic restriction because such

subgroups also classify the types of patterns you can find in two dimensional crystal lattices.

Theorem 2.5.7 (Crystallographic restriction) Let H ≤ O be a finite subgroup of symmetries

of a lattice L. Then

1. Every rotation in H has order 1, 2, 3, 4 or 6.

2. H is isomorphic to a cyclic group Zn or a dihedral group Dn where n = 1, 2, 3, 4 or 6.

Proof. We note that (2) follows from (1) because of theorem (2.5.5). Therefore we need only show

(1). Let θ be the smallest positive angle of any rotation in H and let a ∈ L have minimal length.

Since H is a group of symmetries of L, we know that ρθ(a) ∈ L, and therefore b = ρθ(a)− a ∈ L as

well since L is a lattice. Now, of course |b| ≥ |a| so that we must have θ ≥ 2π/6 so that all rotations

in H have order less than or equal to six. We rule out the case that θ = 2π/5 by noting that in this

case, the vector ρ2
θ(a) + a ∈ L is shorter than a (draw the picture!)

We are now in a position to completely classify all discrete subgroups of Iso(R2)! Given such a group

G, we have already classified G as a rosette, frieze or wall pattern according to the point group LG

being trivial, isomorphic to Z, or isomorphic to Z× Z respectively.

If LG is trivial, then G is isomorphic to the point group G, and hence G is isomorphic to Zn or Dn

by proposition (2.5.4). Therefore there are exactly two “types” of rosettes.
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If LG is isomorphic to Z, then we have already remarked that it can be shown that there are exactly

7 possible frieze patterns.

Finally, if LG is isomorphic to Z×Z, then LG is a lattice and one can show using the crystallographic

restriction that there are exactly 17 possible such figures. Therefore there are 17 possible wall

patterns.

2.6 Finite subgroups of SO3(R)

The goal of this lecture is to classify all finite subgroups of the rotation group SO3 of R3. Our

classification will use the counting formula for the action of SO3 on a certain subset of the unit

sphere S2. We remind the reader that if n ≥ 0 is an integer, the unit n-sphere or just n-sphere

is the set

Sn = {x ∈ Rn+1 : |x| = 1}.

In this notation, S1 ⊂ R2 is the unit circle (this agrees with our earlier notation (MAT 150A) for

the unit circle group S1 ⊂ C×), S2 ⊂ R3 is the unit sphere, S3 ⊂ R4 is the 3-sphere (use your

imagination!), etc.. Since every element of SO3 is an isometry (a rotation in fact), it is clear that

for all A ∈ SO3 and all x ∈ S2, Ax ∈ S2 and hence SO3 acts on the sphere S2.

Let G ≤ SO3 be a finite subgroup and recall that for each non-identity element 1 6= g ∈ G, g is a

rotation about some line l in R3. It follows that there are exactly two points p,−p ∈ S2 in R3 such

that gp = p and g(−p) = −p. We call p and −p the poles of g. We let

P = {p ∈ S2 : gp = p for some g ∈ G, g 6= 1}

denote the set of all poles for G.

Lemma 2.6.1 If p ∈ P and h ∈ G, then hp ∈ P and hence P is a G-set.

Proof. Since R3 is a G-set under the natural action, the last assertion follows immediately from

the first. Now, if p ∈ P, then there exists an element g ∈ G with g 6= 1 and gp = p. Then we note

that for any h ∈ G, hgh−1 ∈ G and

hgh−1(hp) = hgp = hp.

Moreover g 6= 1 implies hgh−1 6= 1 so that hp ∈ P as desired.
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We can now state an prove our main theorem. For notation, we let T denote the (orientation

preserving) symmetry group of a regular tetrahedron centered at the origin, O denote the (orientation

preserving) symmetry group of a regular octahedron centered at the origin, I denote the (orientation

preserving) symmetry group of a regular icosahedron centered at the origin. If we have time, we will

come back and show that T ∼= A4, O ∼= S4 and I ∼= A5. For now, we will assume this. Here is the

classification we are after.

Theorem 2.6.2 If G is a non-trivial finite subgroup of the rotation group SO3, then exactly one of

the following holds:

1. G is isomorphic to a cyclic group Zn for some n ≥ 2.

2. G is isomorphic to a dihedral group Dn for some n ≥ 1.

3. G is isomorphic to A4.

4. G is isomorphic to S4.

5. G is isomorphic to A5.

Proof. For notation, we let N = |G| so that N > 1 and we continue to let P denote the set of all

poles of G. We note that for each p ∈ P, the stabilizer Gp is a finite group of rotations about the

line through p and −p so that Gp is cyclic and hence isomorphic to Zrp . We note that rp > 1 since

p is a pole. If we let np = |Op| denote the size of the orbit containing p, then for all p ∈ P, the

counting formula implies we have

rpnp = N.

Now, for every p ∈ P, there are exactly rp − 1 non-identity elements g of G such that gp = p.

Moreover, for each g 6= 1, there are exactly two poles p ∈ P. Therefore we have the fundamental

formula ∑
p∈P

(rp − 1) = 2N − 2.

If we note that Op = Op′ implies rp = rp′ , then we can collect the terms with the same orbit above

and we have ∑
i

npi(rpi − 1) = 2N − 2
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where the sum is over the distinct orbits Opi . Now, npirpi = N for all i so that dividing both sides

of this equation by N gives ∑
i

(
1− 1

rpi

)
= 2− 2

N
. (2.1)

Now, the right hand side of this formula is clearly less than 2. However, since rpi > 1 for all i,

each term of the sum on the left is at least one half. It follows that there are at most three terms

and hence at most 3 orbits of G under the action on P. We examine the cases of 1, 2 or 3 orbits

separately.

Case 1. One orbit. In this case, the formula (2.1) becomes

1− 1
rp1

= 2− 2
N
.

But this is impossible since 1− 1
rp1

< 1 whereas 2− 2
N ≥ 1.

Case 2. Two orbits. In this case, the formula (2.1) becomes

1
rp1

+
1
rp2

=
2
N
.

Now, rpi ≤ N since rpi |N so that we must have rp1 = rp2 = N . It follows that np1 = np2 = 1 so

that there are two orbits, each with on point. Each of these points is fixed by every element in G

and it is clear that G is a group of rotations through the line through these poles. Since G is finite,

G is cyclic and hence isomorphic to ZN and N ≥ 2.

Case 3. Three orbits. In this case, the formula (2.1) becomes(
1
rp1

+
1
rp2

+
1
rp3

)
− 1 =

2
N
.

We assume that rp1 ≤ rp2 ≤ rp3 and note that it is not possible that rpi ≥ 3 for all i because

2/N > 0. Therefore rp1 = 2. We again consider two cases.

Case 3.1 rp2 = 2. It then follows that 2rp3 = N and hence np3 = 2. Therefore there are three

orbits: Op1 and Op2 have N/2 elements, each of which is stabilized by exactly 1 non-identity element

of G, and Op3 = {p3,−p3} has 2 elements, which are opposite one another on the sphere. Every

element of G either fixes both of these elements, or interchanges them. If g ∈ G interchanges them,

then g is a rotation through π radians in a line l′ in the plane orthogonal to the line l through p3

and −p3. The other poles all lie in this plane. One orbit, say Op1 form the vertices of a regular

(N/2)-gon and the other orbit lies over the midpoints of the edges of this polygon. In this case, G

is isomorphic to the dihedral group Dr where r = rp3 .
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Case 3.2 rp2 ≥ 3. We note that rp2 ≥ 4 and rp3 ≥ 4 is impossible since (1/2 + 1/4 + 1/4)− 1 = 0

and 2/N > 0. Similarly, (1/2 + 1/3 + 1/6) − 1 = 0 shows that rp2 = 3 and rp3 ≥ 6 is impossible.

The remaining possibilities are then

3.2.1 (rp1 , rp2 , rp3) = (2, 3, 3).

3.2.2 (rp1 , rp2 , rp3) = (2, 3, 4).

3.2.3 (rp1 , rp2 , rp3) = (2, 3, 5).

3.2.1 Note that (rp1 , rp2 , rp3) = (2, 3, 3) implies that N = 12 and hence (np1 , np2 , np3) = (6, 4, 4).

Now, let p be one of the four poles in the orbit Op3 , and let q ∈ Op2 be nearest to p. Since the

stabilizer Gp3 has order 3, the images of q under Gp3 give three equally spaced nearest neighbors

to p. These points form an equilateral triangle and, together, these four triangles assemble into a

regular tetrahedron. The poles in Op1 lie above the midpoints of the six edges of this tetrahedron,

the poles in Op2 lie above the four vertices of this tetrahedron, and the poles in Op3 lie above the

four centers of the faces of this tetrahedron. It follows that each element of G is a rotation fixing

this tetrahedron and hence G = T since |G| = 12.

3.2.2 Note that (rp1 , rp2 , rp3) = (2, 3, 4) implies that N = 24 and hence (np1 , np2 , np3) = (12, 8, 6).

Now, let p be one of the six poles in the orbit Op3 , and let q ∈ Op2 be nearest to p. Since the

stabilizer Gp3 has order 4, the images of q under Gp3 give four equally spaced nearest neighbors to

p. These points form the vertices of a square and, together, these six squares assemble into a cube.

The poles in Op1 lie above the midpoints of the 12 edges of this cube, the poles in Op2 lie above

the 8 vertices of this cube, and the poles in Op3 lie above the 6 centers of the faces of this cube. It

follows that each element of G is a rotation fixing this cube and hence G = O since |G| = 24.

3.2.3 Note that (rp1 , rp2 , rp3) = (2, 3, 5) implies that N = 60 and hence (np1 , np2 , np3) = (30, 20, 12).

Now, let p be one of the 12 poles in the orbit Op3 , and let q ∈ Op2 be nearest to p. Since the stabilizer

Gp3 has order 5, the images of q under Gp3 give 5 equally spaced nearest neighbors to p. These points

form the vertices of a regular pentagon and, together, these 12 pentagons assemble into a regular

dodecahedron. The poles in Op1 lie above the midpoints of the 30 edges of this dodecahedron, the

poles in Op2 lie above the 20 vertices of this dodecahedron, and the poles in Op3 lie above the 12

centers of the faces of this dodecahedron. It follows that each element of G is a rotation fixing this

dodecahedron and hence G = I since |G| = 60.
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Chapter 3

Linear Groups

3.1 The classical linear groups

If F is a field, the general linear group GLn(F) and its subgroups are arguably among the most

important groups in all of mathematics. We have just seen the the rotation groups of R2 and R3

are SO2 and SO3 respectively. We saw that the orthogonal group On is isomorphic to the group of

isometries fixing the origin. The purpose of this lecture is to pose a question about the “shape” of

a linear group as well as describe three important subgroups from a group action point of view.

First, the “shape” of a group? From now on, we specialize to the case F = R or F = C. Since an

element A ∈ GLn(F) is an n× n matrix, we can think of A as an element of Fn
2
. Therefore if G is

a subgroup of GLn(F), G is a subset of Fn
2

and hence we can ask what this subset looks like. This

is what we mean by the shape of the group.

Example 3.1.1 If G = GL1(C), then G is the “punctured complex plane”, that is the complex plane

minus the origin.

Example 3.1.2 If G = U1(C), then G = {z ∈ C : zz = 1} = S1 is a circle.

In the next two lectures, we will discover the shape of the special unitary group SU2(C) and the

rotation group SO3(R).

We end this lecture with a definition of the classical linear groups that uses group actions. Let

G = GLn(R) and let

S = Mn(R) = {A : A is an n× n matrix over R}
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be the set of all n×n matrices over R. We leave the proof of the following proposition to the reader.

Proposition 3.1.3 The operation G× S → S defined by (P,A) 7→ (P t)−1AP−1 is an action of G

on S and hence S is a G-set.

Example 3.1.4 The stabilizer of the identity matrix In under the action (P,A) 7→ (P t)−1AP−1 is

the orthogonal group On(R).

Example 3.1.5 If n = 2m is even, the stabilizer of the matrix

J =

 0 In

−In 0


is called the symplectic group SP2m(R).

Recall that if A is a complex matrix, then A∗ = (A)t, where A means take the complex conjugate

of each entry in A. Here is another proposition for the reader.

Proposition 3.1.6 If G = GLn(C) and S is the set of all n×n matrices over C, then the operation

G× S → S defined by (P,A) 7→ (P ∗)−1AP−1 is an action of G on S and hence S is a G-set.

Example 3.1.7 The stabilizer of the identity matrix In under the action (P,A) 7→ (P ∗)−1AP−1 is

the unitary group Un(C).

For the orthogonal group On(R) and the unitary group Un(C), we have the subgroups consisting of

those elements with determinant 1. We call these subgroups special so that

SOn(R) = {A ∈ On(R) : detA = 1}

is the special orthogonal group and

SUn(C) = {A ∈ Un(C) : detA = 1}

is the special unitary group.

Although it is far from obvious from the definition, each element of the symplectic group SP2m(R)

has determinant 1 so that the letter “S” is appropriate here.



CHAPTER 3. MATHEMATICS 150B - Winter 2001 47

3.2 The special unitary group SU2

The purpose of this lecture is to describe the shape of the special unitary group SU2 = SU2(C) as

well as give algebraic descriptions of certain important subsets of SU2. This material should be of

particular interest to anyone interested in applications of mathematics to physics.

Recall that SU2 is the group of 2× 2 unitary matrices with determinant 1. That is,

SU2 =

P =

 a b

c d

 : a, b, c, d ∈ C, P ∗P = I2,detP = 1

 .

Note that P ∗P = I2 implies that P ∗ = P−1 so that using the familiar formula for the inverse of a

2× 2 matrix, we must have  a c

b d

 =

 d −b

−c a

 .
Therefore we have d = a and c = −b. Moreover, since detP = 1 we have aa+ bb = 1. If we put all

of this together, we have the following (better) description of SU2:

SU2 =

P =

 a b

−b a

 : a, b ∈ C, aa+ bb = 1

 .

Now, if a, b ∈ C are two complex numbers, then the pair (a, b) ∈ C2. The above description of SU2

shows that we can identify SU2 with all pairs (a, b) ∈ C2 such that aa + bb = 1. That is, we have

shown that each element of SU2 determines such a pair, and conversely, a pair (a, b) ∈ C2 with

aa+ bb = 1 determines an element of SU2 as above.

Recalling that the complex dot-product on C2 is given by

(a1, b1) · (a2, b2) = a1a2 + b1b2,

we see that aa+ bb = 1 iff. the pair (a, b) ∈ C2 has length 1.

The following proposition is left as an exercise.

Proposition 3.2.1 If a = x1 + ix2 and b = x3 + ix4, then aa+ bb = 1 if and only if

x2
1 + x2

2 + x2
3 + x2

4 = 1,

and hence there is a bijective correspondence between elements of SU2 and the unit 3-sphere S3.
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The explicit correspondence given in proposition (3.2.1) is

(x1, x2, x3, x4) 7→

 x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

 . (3.1)

Now, this is not an analysis course, but it is worth mentioning that the map (3.1) is continuous, as is

its inverse. In analysis, such a mapping is called a homeomorphism, and we will refer to the map

(3.1) and the canonical homeomorphism. One way to interpret proposition (3.2.1) is to say that

the 3-sphere S3 is a group. Maybe this does not surprise the reader since, after all, the 1-sphere S1

is also a group. There is a very deep theorem in algebraic topology (deep means the known proofs

of the theorem involve a substantial amount of sophisticated mathematics) that states that S1 and

S3 are the only spheres that admit the structure of a group! There is no way to impose a group

law on the 2-sphere S2, for example, in such a way that the multiplication is continuous.

We now proceed to describe algebraically the analogs of longitudes and latitudes in S3. That is,

we will give a geometric definition of latitudes and longitudes in S3 and then use the map (3.1) to

describe these sets algebraically in SU2. The results are very beautiful!

We begin with latitude. If the 2-sphere S2 is placed in R3 with the “poles” at (±1, 0, 0), then the

lines of latitude are the level curves x1 = c, −1 < c < 1. By analogy, we declare the poles of S3 to

be the points (±1, 0, 0, 0) and then “latitudes” are the level surfaces x1 = c, −1 < c < 1. Note that

for each such c, the latitude at x1 = c is a 2-sphere, embedded into R4 by

{(c, x2, x3, x4) : x2
2 + x2

3 + x2
4 = 1− c2}.

We ask the question: how do we describe the latitude spheres algebraically in SU2? First note that

the poles (±1, 0, 0, 0) correspond to the matrices I2 and −I2. Note that ±I2 are in the center of

SU2 and hence are the only elements of their conjugacy classes. The following theorem states that

except for these two elements of SU2, the remaining conjugacy classes are precisely the latitudes.

Our proof will use the trace operator so the the reader may wish to review the important properties

of the trace operator before proceeding. We begin with a lemma.

Lemma 3.2.2 If P, P ′ ∈ SU2, then P and P ′ have the same eigenvalues if and only if P ′ = QPQ∗

for some Q ∈ SU2.

Proof. We know from linear algebra that if P ′ = QPQ∗, then P and P ′ have the same eigenvalues.

To establish the converse, we note that if P ∈ SU2, the characteristic polynomial of P has the form

λ2 − (trP )λ+ 1
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and hence has real coefficients since trP = 2x1 ∈ R. It follows that the two complex roots of this

polynomial, the eigenvalues of P , are complex conjugates λ, λ. Since conjugation is a transitive

relation, it suffices to show that if P ∈ SU2 has eigenvalues λ and λ, then P is conjugate to the

matrix  λ 0

0 λ

 .
Now, there is a theorem from linear algebra called the Spectral Theorem for unitary operators that

states that if P ∈ SU2, then there is an element Q ∈ U2 such that

QPQ∗ =

 λ 0

0 λ

 ∈ SU2

is diagonal. If detQ = 1, we are done. Otherwise, we let δ = detQ and note that δδ = 1 since

Q ∈ U2. Now, if ε ∈ C is a square root of δ, then εε = 1 and if we let Q1 = εQ, then Q1 ∈ SU2 since

detQ1 = ε2δ = δδ = 1. Moreover Q1PQ
∗
1 is diagonal with diagonal entries λ and λ. This shows P

is conjugate to the diagonal matrix with the eigenvalues of P on the diagonal.

If we take another look at the characteristic polynomial of an element P ∈ SU2, then we see that its

roots, the eigenvalues of P , depend only on the trace of P . This is the key observation in the proof

of the following theorem.

Theorem 3.2.3 The non-trivial conjugacy classes of SU2 correspond with the latitudes in S3 under

the canonical homeomorphism. In particular, if −1 < c < 1, then the elements P ∈ SU2 that

correspond with the elements of the latitude at c make up a non-trivial conjugacy class.

Proof. Let P ∈ SU2, so that the characteristic polynomial of P is

λ2 − (trP )λ+ 1.

Since the leading and constant terms in this polynomial are both constant, we wee that the eigenval-

ues of P depend only on trP = 2x1. Therefore lemma (3.2.2) implies that P, P ′ ∈ SU2 are conjugate

if and only if they have the same trace. Now, if −1 < c < 1, then (x1, x2, x3, x4) is in the latitude at

c if and only if x1 = c so that P ∈ SU2 corresponds to a point in this latitude if and only if trP = 2c.

Therefore two points of S3 are in the latitude at c if and only if the corresponding elements of SU2

have the same trace if and only if they are conjugate.

Now we will turn our attention to the analogs of longitudes. If (±1, 0, 0) are the poles on S2, then

a longitude of S2 is the intersection of a plane through (±1, 0, 0) and S2. Note that every point
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except the two poles is contained on a unique longitude. By analogy, we define a longitude of S3

to be the intersection of a 2 dimensional subspace of R4 containing (±1, 0, 0, 0) and S3. Note that

each longitude is the unit circle in the plane the defines it. Moreover, every point p ∈ S3 except

(±1, 0, 0, 0) is on a unique longitude. This follows since if p 6= (±1, 0, 0, 0), then there is a unique 2

dimensional subspace W of R4 with basis ((1, 0, 0, 0), p) and hence W ∩ S3 is the unique longitude

containing p. The following proposition gives a particularly nice longitude. We leave the proof as

an exercise for the reader.

Proposition 3.2.4 The longitude defined by the plane x3 = x4 = 0 corresponds to the set

T =


 λ 0

0 λ

 : λλ = 1

 .

and hence is a subgroup of SU2.

Our next step is to show that all other longitudes correspond to the conjugate subgroups of T . As

usual, we begin with a lemma.

Lemma 3.2.5 Let W be the plane defined by x3 = x4 = 0. If Q ∈ SU2, then Q defines a real linear

map LQ : W → R
4 by the formula

LQ(w) = Q

 w1 + iw2 0

0 w1 − iw2

Q∗.
Moreover, the image LQ(W ) is 2-dimensional.

Proof. If we let Q =

 a b

−b a

, then a direct computation gives

Q

 w1 + iw2 0

0 w1 − iw2

Q∗ =

 u1 + iu2 u3 + iu4

−u3 + iu4 u1 − iu2


where

a = x1 + ix2, b = x3 + ix4,

u1 = w1, u2 = (x2
1 + x2

2 − x2
3 − x2

4)w2,

u3 = (x1x4 + x2x3)w2, u4 = (x2x4 − x1x3)w2.
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These formulas show that the coordinates of LQ(w) are real linear combinations of w1 and w2 and

hence LQ : W → R
4 is a linear map. We leave it as an exercise for the reader to show that kerLQ = 0

so that dimR(LQ(W )) = 2.

Theorem 3.2.6 The longitudes of S3 correspond to the conjugate subgroups QTQ∗, Q ∈ SU2.

Proof. Let Q ∈ SU2. Then lemma (3.2.5) shows that the conjugate subgroup QTQ∗ corresponds

to the the subset S3 ∩ LQ(W ) so that QTQ∗ corresponds to a longitude.

Conversely, if L is a longitude in S3, then for every p ∈ L, p 6= (±1, 0, 0, 0), there is a unique 2

dimensional subspace W ′ of R4 containing p and (1, 0, 0, 0). Also, if P ∈ SU2 corresponds to p, then

the proof of lemma (3.2.2) shows that

P = Q

 λ 0

0 λ

Q∗
for some Q ∈ SU2 so that P ∈ QTQ∗. However, we know from the first part of this proof that

QTQ∗ is a longitude and since p belongs to only one longitude, we see that the longitude defined by

W ′ corresponds to QTQ∗.

We end this lecture with a remark on the cosets of the subgroup T . Since T is a longitude, T is a

circle, and consequently each of the left cosets QT is also a circle. Together, the union of all of these

circles partition S3 so that S3 is a disjoint union of great circles. This decomposition is called the

Hopf fibration and it had (has?) important consequences in algebraic topology.

3.3 The orthogonal representation of SU2

The goal of this lecture is to introduce the notion of a group representation by means of a very

important example. We will also investigate the “shape” of the rotation group SO3. A rigorous

discussion of the shape of this group is best left to a topology class (and I strongly suggest you take

one, especially if you are going to go to graduate school in math!), so we will content ourselves with

a brief overview of the topological ideas. First, the algebra.

Our goal is to show the existence of a homomorphism ϕ : SU2 → SO3 with kerϕ = {±I}. We will

see in the last part of our course that such a map is called a representation of SU2. In particular,

the map we will construct is called the orthogonal representation of SU2. You can remember this

name since ϕ(A) represents A ∈ SU2 as an orthogonal motion - a rotation.
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Recall that all of the conjugacy classes of SU2 except {±I} are 2-spheres. Since SU2 is a group,

it acts on each conjugacy class via conjugation. The main idea in the construction of ϕ will be to

show that each A ∈ SU2 acts on these spheres via conjugation as a rotation. We will use the same

notation as the previous lecture for elements of SU2. In particular, we have the correspondence

(3.1):

(x1, x2, x3, x4) 7→

 x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

 . (3.2)

We also recall the longitude at −1 < c < 1 is the conjugacy class defined by trP = 2c. Our proof

will involve the notion of skew-hermitian matrices. Since we have not seen this class of matrices

before, we make a formal definition.

Definition 3.3.1 (Hermitian / skew-hermitian) A n× n complex matrix A ∈Mn(C) is called

hermitian if A∗ = A. We say A is skew-hermitian if A∗ = −A.

The proof of the following lemma will be left as an exercise.

Lemma 3.3.2 The set

V = {A ∈M2(C) : A∗ = −A, trA = 0}

is a vector space over R under usual matrix addition and the set

B =


 i 0

0 −i

 ,
 0 1

−1 0

 ,
 0 i

i 0


is a basis for V , and hence dimR(V ) = 3.

This brings us to our main theorem of this lecture.

Theorem 3.3.3 There exists a surjective homomorphism ϕ : SU2 → SO3 with kerϕ = {±I}, and

hence SU2 /{±I} ∼= SO3.

Proof. First, we choose the conjugacy class defined by trP = 0. If we denote this class by E , then

we have A ∈ E iff. A has the form

A =

 iy2 y3 + iy4

−y3 + iy4 −iy2


where y2

2 + y2
3 + y2

4 = 1. (We use the symbol E since E corresponds to the latitude with radius 1

so it is the “equator”.) Note that the matrix A is skew-hermitian and trA = 0 so that A ∈ V ,
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the vector space of all 2 × 2 skew hermitian matrices. If B is the basis for V given in the previous

lemma, then the coordinate vector of A with respect to B is (y2, y3, y4)t. Therefore the canonical

homeomorphism takes the basis (e2, e3, e4) to the basis B. Moreover, the condition y2
2 + y2

3 + y2
4 = 1

implies that the conjugacy class E corresponds to the unit 2-sphere in V .

Claim 1. The group SU2 acts on the space V by conjugation.

To see this, we note that if A ∈ V and P ∈ SU2, then tr(PAP ∗) = tr(PAP−1) = trA = 0 and

(PAP ∗)∗ = PA∗P ∗ = −PAP ∗, and hence PAP ∗ ∈ V . The group action axioms follow immediately

since conjugation is an action on the space of all matrices.

Claim 2. Conjugation by a fixed element P ∈ SU2 is a linear operator on V .

To see this, we note that if P ∈ SU2, A,B ∈ V and α ∈ R, then

P (αA+B)P ∗ = P (αA)P ∗ + PBP ∗ = αPAP ∗ + PBP ∗.

Now, together, these two claims imply that each P ∈ SU2 determines a linear map V → V . Let

ϕ(P ) denote the matrix of this map with respect to the basis B for V . Therefore ϕ(P ) is a 3 × 3

real matrix for each P ∈ SU2. This gives a function ϕ : SU2 →M3(R).

Claim 3. ϕ(P ) ∈ GL3(R) for all P ∈ SU2 and the map ϕ : SU2 → GL3(R) is a group homomor-

phism.

To see this, we note that, using the associative law for matrix multiplication, for all P,Q ∈ SU2,

and all A ∈ V

(PQ)A(PQ)∗ = P (QAQ∗)P ∗.

This shows that the product PQ acts as the composition of the action of Q followed by the action

of P . Now, since the matrix of a composition is the product of the two matrices, we have ϕ(PQ) =

ϕ(P )ϕ(Q) for all P,Q ∈ SU2 so that ϕ preserves multiplication. Now, for all P ∈ SU2, we have

ϕ(P−1)ϕ(P ) = ϕ(P−1P ) = ϕ(I2) = I3

since the identity matrix acts as the identity on V . It follows that ϕ(P ) is invertible for all P ∈ SU2

and hence imϕ ⊂ GL3(R) and ϕ : SU2 → GL3(R) is a homomorphism as claimed.

Claim 4. The matrix ϕ(P ) ∈ SO3(R) for all P ∈ SU2.

We could prove this claim by explicitly computing the matrix ϕ(P ) with respect to the basis B

and verifying that the columns are an orthonormal basis for R3. This computation is not difficult,

but it is tedious. We therefore choose to prove the claim by showing that ϕ(P ) preserves dot
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product in V . It will then follow that ϕ(P ) ∈ O3(R). Then we will tackle the determinant. If

A,A′ ∈ E , then we can use the inverse of the canonical homeomorphism to compute the dot product

〈A,A′〉 = y2y
′
2 +y3y

′
3 +y4y

′
4. We leave it as an exercise for the reader to verify that for all A,A′ ∈ E ,

〈A,A′〉 = −1
2

tr(AA′).

Now, if P ∈ SU2, then for all A,A′ ∈ V , we have

〈PAP ∗, PA′P ∗〉 = −1
2

(PAP ∗PA′P ∗) = −1
2

(AA′) = 〈A,A′〉.

This shows that ϕ(P ) preserves the dot product for all P ∈ SU2 and hence ϕ(P ) ∈ O3. To complete

the proof of the claim, we note that the composition det ◦ϕ : SU2 → {±1} is continuous, and hence

constant. But clearly detϕ(I2) = 1 and hence detϕ(P ) = 1 for all P ∈ SU2 and hence ϕ(P ) ∈ SO3

as claimed.

Together, claims 3 and 4 imply that we have a homomorphism ϕ : SU2 → SO3. It remains to

compute kerϕ and show that ϕ is onto SO3. Note that P ∈ kerϕ if and only if PAP ∗ = A for all

A ∈ V . In particular, PAP ∗ = A for the three basis vectors in B. This implies that b = 0 and a = a

so that P = ±I are the only possibilities. Easily both of these elements are in the kernel so that

kerϕ = {±I}.

To show that ϕ is surjective, we first take an arbitrary rotation about the e2 axis. The matrix of

this rotation in the standard basis is 
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .
If we let a = eiθ/2 and z = y3 + iy4, then a direct computation shows that

PAP ∗ =

 a 0

0 a

 iy2 z

−z −iy2

 a 0

0 a

 =

 iy2 a2z

−a2z −iy2

 .
This computation shows that ϕ(P ) fixes the line through e2 and rotates the plane e2 = 0 by θ.

Therefore ϕ(P ) is the given rotation matrix and hence the image of ϕ contains the subgroup H of

all rotations about the line through e2.

Now, the point e2 corresponds to the matrix E =

 i 0

0 −i

, and since E is a conjugacy class, given

any other A ∈ E , there is a Q ∈ SU2 such that QEQ∗ = A. If Y ∈ V is the vector that corresponds
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to A, then we have ϕ(P )e2 = Y . The conjugate subgroup ϕ(Q)Hϕ(Q∗) is the subgroup of rotations

about the line through Y . If B ∈ SO3, then B is a rotation about a line through some Y , so that

B ∈ ϕ(Q)Hϕ(Q∗). Since H ∈ imϕ, we have B ∈ imϕ and hence ϕ is surjective.

The final statement of the theorem follows immediately from the first isomorphism theorem.
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Chapter 4

Group Representations

4.1 Group representations

In this lecture, we begin our study of the very important notion of a group representation. As we

will see, this idea is not completely new to us. Indeed, we have been studying a type of group

representation all quarter; namely group actions. For the convenience of the reader, we recall here

an important theorem from the very first lecture of the course.

Theorem 4.1.1 Let G be a group and S be a set. Then S is a G-set if and only if there exists a

homomorphism ρ : G→ A(S) where A(S) denotes the permutation group of S.

One way to describe the content of this theorem is to say that S is a G-set if and only if we can

“represent” each element g ∈ G as a permutation of the set S. The fact that ρ : G → A(S) is a

homomorphism means that the permutation represented by the product gh of two elements of G is

simply the composition of the permutations represented by g and h separately. In our next topic of

study, group representations, the principal idea is the same, except that we will represent each g ∈ G

as an invertible linear operator on a vector space. Just as with permutations, we will require the

product gh of two elements of the group to be represented by the composition of linear operators.

This will give rise to a group homomorphism. In the first definition, we will work with matrices

instead of linear operators. Here is the main definition.

Definition 4.1.2 (Matrix representation) Let G be a group and F a field. A matrix repre-
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sentation of G is a group homomorphism

R : G→ GLn(F).

The number n ≥ 1 is called the dimension of the representation. We will denote the matrix R(g)

by Rg.

Therefore if R : G→ GLn(F) is a matrix representation of G, then for each g ∈ G, Rg ∈ GLn(F) is

an invertible matrix over F and RgRh = Rgh for all g, h ∈ G.

Example 4.1.3 Let n ≥ 1 and let G = Sn be the symmetric group on n letters. We define

R : Sn → GLn(R) by letting Rp denote the permutation matrix defined by p ∈ Sn. That is, Rp is

the n× n matrix over R whose jth column is the standard basis vector ep(j).

Example 4.1.4 Another rich source of examples of matrix representations can be found among the

finite rotation groups. We will illustrate this idea with the rotation group O of the cube. If we place

a cube in R3 with its center at the origin, then the three coordinate axes pass through the midpoints

of opposite pairs of faces as shown here.

e

e

e
1

2

3

Figure 4.1: If a unit edge length cube is placed with its center at the origin, then the three coordinate

axis intersect the cube at the midpoints of the faces.

If we let x ∈ O denote the rotation through the e1 axis through π/2 radians (clockwise when viewed

from the positive e1 axis), then the matrix of x in the standard basis (e1, e2, e3) is

Rx =


1 0 0

0 0 −1

0 1 0

 .



CHAPTER 4. MATHEMATICS 150B - Winter 2001 58

If we let y denote the rotation through π radians about the line joining the midpoints of the edges

through (1,−1, 1), (1, 1, 1) and (−1,−1,−1), (−1, 1,−1), then we have

Ry =


0 1 0

1 0 0

0 0 −1

 .
Similarly, the reader can write down the matrices Rg for all 24 elements g ∈ O.

In both of the previous examples, each element of G gives rise to a unique matrix Rg. In terms of

the homomorphism R : G → GLn(F), this means that R is injective, or equivalently, kerR = {e}.

This does not have to be the case in general. In particular, we make the following formal definition.

Definition 4.1.5 (Faithful) A matrix representation R : G→ GLn(F) is called faithful if kerR =

{e} where e ∈ G denotes the identity.

The following proposition is left as an exercise for the reader.

Proposition 4.1.6 If R : G→ GLn(F) is a faithful matrix representation of G, then G is isomor-

phic to a subgroup of GLn(F).

Now, it turns out that it is much easier to study the notion of a group representation if we do

not work with matrices in a given basis. That is, we want to define the notion of representing an

element of a group as a linear operator, without choosing a particular basis. To this end, if V is

a finite dimensional vector space of a field F, then we let GL(V ) denote the group of all invertible

linear operators T : V → V , where of course the group operation is composition of functions. The

following proposition gives the relationship between GL(V ) and GLn(F) where n = dimF(V ).

Proposition 4.1.7 If V is a vector space over F with dimF(V ) = n, then choosing a basis B for V

gives rise to a group isomorphism GL(V )→ GLn(F) that maps T ∈ GL(V ) to the matrix of T with

respect to the basis B.

Proof. We saw in MAT 150A that every linear map T : V → V determines a matrix AT over F.

Moreover, the matrix that corresponds to the composition of two operators T and T ′ is the product

of the two matrices. This shows that the map that sends T to its matrix AT satisfies AT◦T ′ = ATAT ′ .

Since each T ∈ GL(V ) is invertible, we have

In = A1V = AT◦T−1 = ATAT−1
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so that AT ∈ GLn(F) for all T ∈ GL(V ). If AT = AT ′ , then T (vj) = T ′(vj) for all basis vectors

vj ∈ B and hence T = T ′. This shows that the map T 7→ AT is an injective group homomorphism

GL(V ) → GLn(F). Finally, if A ∈ GLn(F), then left multiplication by A defines a linear operator

T : V → V and clearly AT = A.

This proposition motivates the following definition.

Definition 4.1.8 (Group representation) A (finite dimensional) representation of a group

G is a group homomorphism

ρ : G→ GL(V )

where V is a finite dimensional vector space over a field F. If dimF(V ) = n, then n is called the

dimension of the representation or the degree of the representation. As with matrix representa-

tions, we will write ρg = ρ(g). As with matrix representations, a representation ρ : G → GL(V ) is

called faithful if ker ρ = {e}.

To test if the above definitions are sinking in, the reader is invited to supply a proof of the following

proposition.

Proposition 4.1.9 If ρ : G → GL(V ) is an n-dimensional representation of G, and B is a basis

for V , then the map R : G → GLn(F) given by Rg = (the matrix of ρg with respect to the basis B)

is a matrix representation of G.

Before we go any further, we want to make a remark about notation an terminology in the repre-

sentation theory of groups. Strictly speaking, a representation of a group G is a homomorphism

ρ : G → GL(V ) where V is a vector space over F. That is, a representation is a function (a ho-

momorphism). However, if one is only dealing with one representation at a time, it is customary

to suppress ρ from the notation altogether and simply refer to the “representation V ”. Similarly,

one can speak of the dimension of V as the dimension of the representation (since they are the

same number). So, if you are reading about group representations, do not be surprised if the author

(present author included!) refers to the vector space V itself as the representation.

We want to conclude this lecture with a closely related notion of the operation of a group on a

vector space. The reader is encouraged to take another look at the “two” notions of group actions

developed earlier (the main definition and the homomorphism) before proceeding here.

Definition 4.1.10 Let G be a group and V a vector space over a field F. We say G operates on

V if there is a map G× V → V , written (g, v) 7→ gv that satisfies the following axioms:
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O1. The mapping G× V → V is an action of G on V .

O2. g(v + v′) = gv + gv′ for all g ∈ G and all v, v′ ∈ V .

O3. g(αv) = α(gv) for all g ∈ G, v ∈ V and α ∈ F.

The essence of this definition is as follows. A group G operates on a vector space V if V is a G-

set in the usual sense and each g ∈ G acts as a linear map V → V . The relationship between a

representation of G and an operation of G on V is given in the following theorem.

Theorem 4.1.11 Let G be a group and V be a vector space over F. Then there exits an represen-

tation ρ : G→ GL(V ) if and only if G operates on V .

Proof. (=⇒) Suppose that ρ : G → GL(V ) is a representation and define a map G × V → V by

(g, v) 7→ ρg(v). The axiom O1 follows immediately since ρ is a homomorphism and GL(V ) is a

subgroup of the group A(V ) of all permutations of V . Moreover, the axioms O2 and O3 follow at

once since ρg : V → V is a linear map for all g ∈ G.

(⇐=) If G operates on V , then for each g ∈ G, the axioms O2 and O3 show that the assignment

v 7→ gv is a linear function V → V . Moreover this function is invertible since the function determined

by g−1 is obviously an inverse to the function determined by g. This gives a map ρ : G → GL(V )

defined by ρ(g)(v) = gv. Now, the axiom O1 shows that for all g, h ∈ G and all v ∈ V , we have

ρ(gh)(v) = (gh)(v) = g(hv) = ρ(g)(hv) = ρ(g)(ρ(h)(v)) = ρ(g)ρ(h)(v)

so that ρ is a homomorphism. Therefore V is a representation of G.

Although the definition of group representation is valid over any field F, we will primarily focus on the

case F = C. Such representations are called complex representations. Similarly, representations

over R are called real representations. Note that every real representation can be viewed as a

complex representation since GLn(R) ≤ GLn(C).

4.2 G-invariant forms and unitary representations

For the rest of the course, we are going to study the problem of decomposing representations of groups

into simpler ones. Although all of the definitions that we will give are valid over arbitrary fields,

most of our proofs will require special properties of the field of complex numbers C. Therefore, from
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now on, we will assume that all representations (abstract and matrix) are complex representations.

Therefore, from now on, “vector space” means “complex vector space”, and so on.

Now, recall that if x, y ∈ Cn, then the dot product is the complex number

x · y = x1y1 + · · ·+ xnyn.

This dot product is a special case of the following, more general, definition.

Definition 4.2.1 (Hermitian form) If V is a vector space, then a map V × V → C, written

(v, w) 7→ 〈v, w〉 is a hermitian form if it satisfies

1. 〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉,

2. 〈v, w + w′〉 = 〈v, w〉+ 〈v, w′〉,

3. 〈αv,w〉 = α〈v, w〉,

4. 〈v, αw〉 = α〈v, w〉,

5. 〈w, v〉 = 〈v, w〉,

for all v, v′, w, w′ ∈ V and all α ∈ C. A hermitian form 〈·, ·〉 is called positive definite if, in

addition, we have

6. 〈v, v〉 ≥ 0 for all v ∈ V and 〈v, v〉 = 0 iff. v = 0.

Example 4.2.2 The usual dot product x · y = 〈x, y〉 is a positive definite hermitian form on Cn.

Definition 4.2.3 (Hermitian space) A vector space V together with a positive definite hermitian

form 〈·, ·〉 is called a hermitian space. If V is a hermitian space, then two elements v, w ∈ V are

orthogonal if 〈v, w〉 = 0. A basis B = (v1, . . . , vn) for V is orthonormal (with respect to 〈·, ·〉)

if 〈vi, vj〉 = δij.

We will omit the proof of the following theorem. The proof can be found in any elementary linear

algebra text.

Theorem 4.2.4 (Gram-Schmidt) If V is a finite dimensional hermitian space with a positive

definite hermitian form 〈·, ·〉, then V has an orthonormal basis with respect to this form.



CHAPTER 4. MATHEMATICS 150B - Winter 2001 62

Definition 4.2.5 (Unitary operator) If V is a hermitian space, a linear operator T : V → V is

called unitary if

〈T (v), T (w)〉 = 〈v, w〉

for all v, w ∈ V .

Here is the relationship between this new usage of the word unitary for operators and the old usage

for matrices.

Proposition 4.2.6 If V is a finite dimensional hermitian space and B is an orthonormal basis for

V , then an operator T : V → V is unitary if and only if the matrix [T ]B of T with respect to B is a

unitary matrix.

Proof. Suppose that B = (v1, . . . , vn) is an orthonormal basis. Then we compute

〈T (v), T (w)〉 = 〈v, w〉 for all v, w ∈ V ⇐⇒ 〈T (vi), T (vj)〉 = 〈vi, vj〉 for all i

⇐⇒ T (B) is an orthonormal basis

⇐⇒ the columns of [T ]B are orthogonal

⇐⇒ ([T ]B)∗([T ]B) = In.

Definition 4.2.7 (Unitary representation) If G is a group, a matrix representation R : G →

GLn(C) is called unitary if Rg ∈ Un(C) for all g ∈ G. If V is a hermitian space, a representation

ρ : G→ GL(V ) is unitary if ρg is a unitary operator for all g ∈ G. That is, ρ is unitary if

〈ρg(v), ρg(w)〉 = 〈v, w〉

for all v, w ∈ V and all g ∈ G.

Corollary 4.2.8 If V is a hermitian space with orthonormal basis B, then a representation ρ : G→

GL(V ) is unitary iff. the induced matrix representation ρB is unitary.

Proof. Exercise.

The goal of this lecture is to show that every representation of a finite group G is conjugate to a

unitary representation. That is, given a representation ρ : G→ GL(V ), we can find an orthonormal

basis in which ρB is unitary. Recall that ρ : G→ GL(V ) is unitary iff.

〈ρg(v), ρg(w)〉 = 〈v, w〉
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for all v, w ∈ V and all g ∈ G. The key to understanding these representations is to view this

equality as a condition on the hermitian form rather than as a condition on ρ. Specifically, we make

the following definition.

Definition 4.2.9 If V is a vector space and ρ : G → GL(V ) is a representation, we say that a

hermitian form 〈·, ·〉 on V is G-invariant if

〈ρg(v), ρg(w)〉 = 〈v, w〉

for all v, w ∈ V and all g ∈ G.

Here is the main theorem of the lecture.

Theorem 4.2.10 If G is a finite group and ρ : G→ GL(V ) is a representation of G on a hermitian

space V , then there exists a G-invariant, positive definite hermitian form 〈·, ·〉 on V .

Proof. Since V is a hermitian space, there exists a positive definite hermitian form {·, ·} on V . We

definite a form 〈·, ·〉 : V × V → C by

〈v, w〉 =
1
N

∑
g∈G
{ρg(v), ρg(w)}

where N = |G| is the order of G. We leave it as an exercise for the reader to show that the map

〈·, ·〉 is a positive definite hermitian form on V . To see that the form is G-invariant, we note for all

v, w ∈ V and all h ∈ G, we have

〈ρh(v), ρh(w)〉 =
1
N

∑
g∈G
{ρg(ρh(v)), ρg(ρh(w))} =

1
N

∑
g∈G
{ρgh(v), ρgh(w)}.

Now, since G is a group, for a fixed h ∈ G, the products gh range over G as g ranges over G.

Therefore, rearranging the summation we have

〈ρh(v), ρh(w)〉 =
1
N

∑
g∈G
{ρgh(v), ρgh(w)} =

1
N

∑
g′∈G
{ρg′(v), ρg′(w)} = 〈v, w〉

and hence 〈·, ·〉 is G invariant.

Corollary 4.2.11 If G is a finite group and R : G→ GLn(C) is a matrix representation, then there

exists a matrix P ∈ GLn(C) such that the conjugate representation R′ : G → GLn(C) defined by

R′g = PRgP
−1 is unitary.
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Proof. We can think of R as the matrix representation of ρ : G → GL(Cn) in the standard basis.

Therefore, theorem (4.2.10) implies that there is a positive definite hermitian form 〈·, ·〉 on Cn that

is G-invariant. If B is an orthonormal basis for this form, then the matrices R′g = [ρg]B are unitary

by proposition (4.2.6). If we let P be the change of basis matrix from the standard basis to B, then

R′g = PRgP
−1 for all g ∈ G and R′g ∈ Un for all g ∈ G.

Corollary 4.2.12 Every finite subgroup of GLn(C) is conjugate to a subgroup of Un.

Proof. If G is a finite subgroup of GLn(C), then the inclusion map R : G→ GLn(C) given by Rg = g

is a representation of G so that applying the previous corollary to this representation shows there

exists an element P ∈ GLn(C) such that PgP−1 ∈ Un(C) for all g ∈ G and hence PGP−1 ≤ Un(C)

as desired.

We end this lecture with a discussion on what it means for two representations of a group G to be

“the same”.

Definition 4.2.13 (Equivalent representations) Let G be a group and let V and W be vector

spaces. Two representations ρ : G → GL(V ) and ρ′ : G → GL(W ) are called equivalent or

isomorphic if there is an isomorphism of vectors spaces T : V →W such that T (ρg(v)) = ρ′g(T (v))

for all g ∈ G and v ∈ V . That is, for every g ∈ G, the diagram

V
ρg - V

W

T

?

ρ′g
- W

T

?

commutes.

It is a nice exercise to show that equivalence of representations of a group G is an equivalence relation

on the set of all representations of G. Therefore to classify all representations of G, for example,

we need only classify all possible equivalence classes. We have already made a huge step in that

direction for finite groups in this lecture. Namely, the following corollary implies that in order to

classify representations of finite groups, we need only classify unitary representations.

Corollary 4.2.14 If G is a finite group, then every representation ρ : G→ GL(V ) is equivalent to

a unitary representation ρ′ : G→ GL(V ).
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Proof. Let ρ : G → GL(V ) be a representation of G and let R be the matrix representation of ρ

in some basis B. Corollary (4.2.11) implies that R is conjugate to a unitary matrix representation

R′. That is, if B′ is an orthonormal basis for the G-invariant inner product on V , then the change

of basis matrix P ∈ GLn(C) from B to B′ satisfies R′g = PRgP
−1 ∈ Un(C) for all g ∈ G. We define

ρ′ : G → GL(V ) by letting ρ′g : V → V be the unitary operator defined by R′g. That is, if v = B′x

(x is the coordinate vector of v ∈ V ), then

ρ′g(v) = B′R′gx

for all g ∈ G. If T : V → V is defined by mapping B to B′, then T is an isomorphism. Moreover,

if x ∈ Cn is the coordinate vector of v ∈ V with respect to B, then Px is the coordinate vector of

T (v) with respect to the basis B′. In hyper-vector notation, we have

v = Bx⇐⇒ T (v) = B′Px.

Now, if v ∈ V and v = Bx, then for all g ∈ G we have

T (ρg(v)) = B′PRgx = B′R′gPx = (ρ′g(T (v))

and hence we have T ◦ ρg = ρ′g ◦ T for all g ∈ G.

4.3 Invariant subspaces and irreducibility

Recall that if T : V → V is a linear operator on a vector space V , a subspace W ≤ V is called

T -invariant if T (W ) ⊂W . This idea is generalized in the following definition.

Definition 4.3.1 (G-invariant) If ρ : G→ GL(V ) is a representation, a subspace W ≤ V is called

G-invariant if

ρg(W ) ⊂W

for all g ∈ G.

In other words, W is a G-invariant subspace if and only if it is ρg-invariant for all g ∈ G.

Example 4.3.2 Let G = Dn and let ρ : Dn → SO3 be the representation of Dn that maps g ∈ Dn

to the corresponding rotational symmetry of a regular n-gon in the xy-plane. Clearly the plane

containing the n-gon is a 2-dimensional invariant subspace since every element of Dn maps this
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plane to itself. Similarly, the line through the center of the n-gon perpendicular to this plane is a

1-dimensional invariant subspace.

Example 4.3.3 If O is the orientation preserving symmetry group of the cube, then the represen-

tation ρ : O → SO3 has no 1 or 2-dimensional invariant subspaces. That is, there is no line or plane

through the origin that every element of O maps to itself.

Every representation has invariant subspaces. Indeed, the zero subspace and V are always G-

invariant. The representations for which these are the only G-invariant subspaces play a special role

in representation theory.

Definition 4.3.4 (Irreducible) A representation ρ : G → GL(V ) is called irreducible if it has

no, non-zero proper G-invariant subspaces. Otherwise it is reducible.

Example 4.3.5 The representation of Dn above is reducible. The representation of the rotations

of the cube is irreducible.

Proposition 4.3.6 Suppose that ρ : G→ V is a representation and V = V1⊕V2 where both V1 and

V2 are G-invariant subspaces. If Bi is a basis for Vi, and B = (B1,B2), then the matrices Rg in the

matrix representation of ρ with respect to the basis B of V have the block form Ag 0

0 Bg


where Ag is the matrix of the restriction ρ1g of ρg to V1 and Bg is the matrix of ρ2g to V2.

Proof. Exercise.

We usually write ρ = ρ1 ⊕ ρ2 if V is the direct sum of invariant subspaces V1 and V2 and ρi is

the restriction of ρ to Vi. In this case, we say the representation ρ is the direct sum of the

representations ρi.

Example 4.3.7 Let ρ : Dn → SO3 be the standard representation of Dn considered above. We

choose an orthonormal basis B = (v1, v2, v3) for R3 so that v1 is perpendicular to the plane containing

the n-gon and v2 passes through a vertex so that the matrices of the generators x, y ∈ Dn in this

basis have the form

Rx =


1 0 0

0 cn −sn

0 sn cn

 , Ry =


−1 0 0

0 1 0

0 0 −1


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where cn = cos(2π/n) and sn = sin(2π/n). In this case, the representation R : Dn → SO3 is the

direct sum R = A ⊕ B, where A : Dn → GL1(R) is the 1-dimensional matrix representation given

by

Ax = [1], Ay = [−1],

and B : Dn → GL2(R) is the 2-dimensional representation given by

Bx =

 cn −sn

sn cn

 , Ry =

 1 0

0 −1

 .
One of the main problems in group representation theory is to determine if a give group represen-

tation is irreducible. In general, this problem is difficult. One reason for this difficulty is that even

if a representation of G is reducible, the matrices of ρg will not necessarily have block form. That

is, the chosen basis may not be compatible with the invariant subspace decomposition. Therefore

it can be hard to recognize when a representation is reducible by looking at matrices. We will see

that we can always find a compatible basis for the case of a unitary representation. Before we can

state this fact as a theorem, we need to briefly review some facts about inner product spaces.

Definition 4.3.8 Let V be a hermitian space with inner product 〈·, ·〉 and let W ≤ V be a subspace

of V . We define the orthogonal complement of W as the set

W⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈W}.

Lemma 4.3.9 If W is a subspace of a hermitian space V , then the orthogonal complement of W is

also a subspace of V and V = W ⊕W⊥.

Proof. We leave the proof that W⊥ is a subspace of V to the reader. To show that V = W ⊕W⊥, it

suffices to show that W ∩W⊥ = {0} and that W +W⊥ = V . First, if w ∈W ∩W⊥, then 〈w,w〉 = 0

so that w = 0. This show that W ∩W⊥ = {0}. Now, we let (w1, . . . , wk) be an orthonormal basis for

W and extend it to as basis (w1, . . . , wk, vk+1, . . . , vn) for V . If we apply the Gram-Schmidt process

to this basis, we will not change any vector wi since (w1, . . . , wk) is already an orthonormal basis.

Therefore, an application of Gram-Schmidt to this basis gives an orthonormal basis

B = (w1, . . . , wk, wk+1, . . . , wn)

for V . Now, given v ∈ V , we write

v =
k∑
i=1

αiwi +
n−k∑
j=1

αk+jwk+j = v′ + v′′.
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Clearly v′ ∈W . Moreover, for all 1 ≤ i ≤ k, we have

〈wi, v′′〉 = 〈wi,
n−k∑
j=1

αk+jwk+j〉 =
n−k∑
j=1

αk+j〈wi, wk+j〉 = 0

since 〈wj , wk+j〉 = 0 for j ≥ 1. This shows that v′′ ∈ W⊥ and hence v = v′ + v′′ ∈ W + W⊥ and

the proof is complete.

For general representations, it is possible that there is an invariant subspace W in V , but that all

possible complementary subspaces to W are not invariant. In other words, we may not be able to

write ρ as a direct sum of two sub-representations. The following theorem states that this is not the

case for unitary representations.

Theorem 4.3.10 Let ρ : G → GL(V ) be a unitary representation of a group G into a hermitian

space with positive definite hermitian form 〈·, ·〉. If W ≤ V is a G-invariant subspace, then the

orthogonal complement W⊥ is also G-invariant and hence V = W ⊕W⊥ as representations of G.

Proof. If W ≤ V is a subspace, the previous lemma implies that V = W ⊕W⊥ as vector spaces.

Therefore, to prove the theorem, it suffices (by proposition (4.3.6)) to show that W⊥ is also G-

invariant. Let v ∈ W⊥ and let g ∈ G be arbitrary. We want to show that ρg(v) ∈ W⊥. Let w ∈ W

be arbitrary and note that ρgρg−1(w) = w for all g ∈ G and ρg−1(w) ∈ W since W is G-invariant.

Then, since ρg is unitary, we may compute

〈ρg(v), w〉 = 〈ρg(v), ρgρg−1(w)〉 = 〈v, ρg−1(w)〉 = 0

where the last equality follows since v ∈W⊥ and ρg−1(w) ∈W . We have shown that 〈ρg(v), w〉 = 0

for all w ∈W and hence ρg(v) ∈W⊥. Since v ∈W⊥ and g ∈ G were arbitrary, this shows that W⊥

is G-invariant. Now, an application of proposition (4.3.6) finishes the proof.

Corollary 4.3.11 Every unitary representation ρ : G → GL(V ) is the direct sum of irreducible

representations.

Proof. We proceed by induction on n = dimC(V ). If dimC(V ) = 1, then V has no proper subspaces

at all so that, in particular, V has no G-invariant subspaces and hence V is irreducible. Suppose

that n = dimC(V ) > 1 and that all unitary representations of G with dimension less that n can be

written as a direct sum of irreducible representations. If G has no proper invariant subspace, then

V is irreducible and we are done. Otherwise, there is a proper subspace W ≤ V that is G-invariant.
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By the previous proposition, V = W ⊕W⊥ as representations of G. Now, if W is a proper subspace

of V , then W⊥ is also a proper subspace so that dimC(W ) < n and dimC(W⊥) < n. The induction

hypothesis then implies that W and W⊥ can be written as a direct sum of irreducible representations.

Since V = W ⊕W⊥, substituting gives V as a direct sum of irreducible representations.

Corollary 4.3.12 (Maschke’s Theorem) Every representation ρ : G→ GL(V ) of a finite group

G is the direct sum of irreducible representations.

Proof. If G is finite, then we may assume that every representation of G is unitary.

4.4 Characters

In this final lecture of the course, we will take a brief look at one of the most powerful, and beautiful,

tools in representation theory: characters. Although some of our definitions are valid for infinite

groups, the theory we want to develop is far more complicated in that case. Therefore, for the rest

of this lecture (the rest of the course!), all groups we consider are finite.

As Artin points out in his introduction to characters, “The secret to understanding representations

is not to write down the matrices explicitly unless absolutely necessary”. Indeed, as we will see

in the following definition, given a representation, we will ignore virtually everything about the

corresponding matrices. We will keep only the trace!

Definition 4.4.1 (Character) Let G be a (finite) group and let ρ : G→ GL(V ) be a representation

of G. We define the character of ρ to be the complex valued function

χ : G→ C

defined by

χ(g) = tr(ρg).

The dimension of the character χ is defined to be the dimension of the representation ρ. If ρ is

an irreducible representation, then we say χ is an irreducible character.

Now is a good time to remind the reader that the number tr(ρg) is defined to be the trace of any

matrix of the operator ρg. If two matrices represent the same operator with respect to different

bases, then they are conjugate and hence have the same trace. Therefore the trace of an operator is

well defined. In fact, we have an even stronger statement.
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Proposition 4.4.2 Let ρ : G → GL(V ) and ρ′ : G → GL(W ) be two representations of a group G

and let χ is the character of ρ and χ′ is a character of ρ′. If ρ is equivalent to ρ′, then χ = χ′.

Proof. If ρ is equivalent to ρ′, then there is an isomorphism T : V → W such that ρg = T−1ρ′gT

for all g ∈ G. It follows that tr ρg = tr ρ′g for all g ∈ G and hence χ = χ′.

We will see (soon!) that the converse of this proposition is also true. This correspondence between

characters and equivalence classes of representations is a powerful tool in studying representations.

We will need to know some basic properties of characters, so we’ll put some in the following propo-

sition. Before we state it, we note that since characters are complex valued functions, we can add

them pointwise. That is (χ+ χ′)(g) = χ(g) + χ′(g).

Proposition 4.4.3 Let ρ : G → GL(V ) be a representation of a finite group G and let χ be the

character of ρ. Then,

1. χ(e) is the dimension of χ, where e ∈ G is the identity.

2. χ(g) = χ(hgh−1) for all g, h ∈ G.

3. χ(g−1) = χ(g) for all g ∈ G.

4. If ρ′ is another representation of G with character χ′, then the character of the direct sum

representation ρ⊕ ρ′ is the sum χ+ χ′.

Proof. (1) Since ρe = 1V , the matrix of ρe in any basis is the identity matrix In where n = dim(V ).

Therefore χ(e) = tr In = n = dimχ.

(2) If g, h ∈ G, then ρhgh−1 = ρhρgρ
−1
h so that tr(ρhgh−1) = tr(ρg). The result follows.

(3) To show this, we note that χ(g) = λ1 + · · ·+ λn where {λi} is the set of eigenvalues of ρg. Now

the eigenvalues of ρg−1 = ρ−1
g are the λ−1

i . Since G is a finite group, each ρg has finite order and

hence the eigenvalues satisfy λki = 1 for some k. It follows that |λi| = 1 so that λ−1
i = λi. Therefore

we have

χ(g−1) = λ−1
1 + · · ·+ λ−1

n = λ1 + · · ·+ λn = χ(g).

(4) This follows since the trace of the block matrix of ρ⊕ ρ′ is the sum of the traces of the blocks.

We want to make two important remarks. First, part (2) of the previous theorem implies that each

character χ is constant on the conjugacy classes of G. Therefore to determine all values of χ, we

need only determine χ(g) for a single representative of each conjugacy class of G. Second, since the
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trace of ρg does not depend on any choice of basis, we may choose a convenient basis for each g to

compute χ(g). Now lets look at an example.

Example 4.4.4 Let R : D4 → SO3 be the standard 3-dimensional representation of the dihedral

group D4 (see the example in the previous lecture), and let χ denote the character of R. Recall that

R = A⊕B where

Ax = [1], Ay = [−1], Bx =

 0 −1

1 0

 , By =

 1 0

0 −1

 .
Recall also that the conjugacy classes of D4 are

C1 = {1}, Cx = {x, x3}, Cx2 = {x2}, Cy = {y, x2y}, Cxy = {xy, x3y}.

Let χA and χB denote the characters of the representationsA andB respectively so that χ = χA+χB .

Now, we compute χA on each conjugacy class of D4:

χA(1) = 1, χA(x) = 1, χA(x2) = 1, χA(y) = −1, χA(xy) = −1.

If we list the elements of each conjugacy class in some fixed order, then we can list all the values of

χA as a vector in C8. Let us use the order D4 = {1, x, x3, x2, y, x2y, xy, x3y} so that we have

χA = (1, 1, 1, 1,−1,−1,−1,−1).

Similarly we can compute

χB = (2, 0, 0,−2, 0, 0, 0, 0),

and therefore

χ = χA + χB = (3, 1, 1,−1,−1,−1,−1,−1).

Note that χ(1) = 3 is indeed the dimension of R.

As we saw in the previous example, if χ is the character of a representation ρ : G → GL(V ), then

we can think of χ as a vector in C|G|. We simply list the conjugacy classes in some order, and then

list the elements in each class in some order and then if g ∈ G is in the ith position, we write χ(g)

in the ith coordinate of the vector. It is useful to keep this construction in mind as you read the

following definition.
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Definition 4.4.5 Let G be a group of order N and let χ and χ′ be the characters of two represen-

tations of G. We define a form on the space of characters by defining

〈χ, χ′〉 =
1
N

∑
g∈G

χ(g)χ′(g).

We note that if we think if χ as an element of CN as described above, then this is just the usual

hermitian inner product on CN , re-normalized by the factor 1/N . It follows immediately that 〈·, ·〉

is a positive definite hermitian form! The following theorem is one of the most beautiful theorems

in the representation theory of finite groups. We will not prove this theorem in this course (it would

take approximately 2 weeks of preparation). However, we will understand its statement as well

as learn how to use it in classifying representations of finite groups. Here is the statement of the

theorem.

Theorem 4.4.6 (Orthogonality relations) Let G be a group of order N and let ρ1, ρ2, . . . denote

representatives from each isomorphism class of the irreducible representations of G. If χi is the

irreducible character of ρi, then

1. 〈χi, χj〉 = δij. That is, the irreducible characters are a pairwise orthogonal set of unit vectors

with respect to the inner product 〈·, ·〉.

2. The number of irreducible representations of G is precisely the number of conjugacy classes of

G. We denote this number by r.

3. If di = dim ρi, then di divides N and

d2
1 + · · ·+ d2

r = N.

Before we begin with the applications of this theorem, we want to point out that since the characters

of the representations of G are functions G → C that are constant on the conjugacy classes, they

are special examples of the following type a functions called class functions.

Definition 4.4.7 (Class function) If G is a finite group, a function f : G → C is called a class

function if f is constant on each conjugacy class of G.

Proposition 4.4.8 Let G be a finite group with r distinct conjugacy classes. The the set C(G) of

all class functions on G is a vector space over C with dimC(C(G)) = r.
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Proof. Since each class function f ∈ C(G) is constant on the conjugacy classes of G, f defines a

function f̃ : CG → C by f̃(Cg) = f(g) where CG denotes the set of conjugacy classes of G. We have

already remarked that the set of complex valued functions on a finite set is a vector space over C

under pointwise addition and scalar multiplication so that C(G) is a complex vector space. We leave

it as an exercise for the reader [Artin 9.5.1] to show that dimC(C(G)) = r, where r = |CG| is the

number of conjugacy classes in G.

Now, together, this proposition and theorem (4.4.6) give us the following (very important!) corollary.

Corollary 4.4.9 If G is a finite group, then the form 〈·, ·〉 makes C(G) into a hermitian space and

the irreducible characters χ1, . . . , χr form an orthonormal basis for C(G).

Proof. We have already commented that the form 〈·, ·〉 is a positive definite hermitian form since it

is a non-zero scalar multiple of the usual hermitian form on C|G|, and therefore C(G) is a hermitian

space. By the previous proposition, we have dimC(C(G)) = r. Moreover, by theorem (4.4.6), the

irreducible characters χi are linearly independent since they are pairwise orthogonal. Since there are

r such characters and dimC(C(G)) = r, we see that (χ1, . . . , χr) form a basis. Finally, 〈χi, χj〉 = δij

shows that this basis is orthonormal.

Corollary 4.4.10 If G is a finite group and χ is the character of a representation ρ of G, then

there are unique integers ni ∈ Z such that

χ = n1χ1 + · · ·+ nrχr

where χ1, . . . , χr are the irreducible characters of G. Moreover, the integer ni is precisely the number

of times the irreducible representation ρi occurs in the direct sum decomposition of ρ.

Proof. Given χ, we know there exist complex numbers n1, . . . , nr ∈ C such that χ = n1χ1+· · ·+nrχr

since the irreducible characters form a basis (χ1, . . . , χr) for the class functions. In fact, since this

basis is orthonormal, we have ni = 〈χ, χi〉 for all i. Now, by Maschke’s theorem (4.3.12), we can

write ρ as a direct sum

ρ = m1ρ1 ⊕m2ρ2 ⊕ · · · ⊕mrρr

where mi ∈ Z for all i and miρi means the direct sum of mi copies of the representation ρi. Now,

since the character of a direct sum is the sum of the characters, we have

χ = m1χ1 +m2χ2 + · · ·+mrχr
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and hence ni = mi ∈ Z for all i by uniqueness. Moreover, we see that 〈χ, χi〉 = ni is precisely the

number of times the irreducible representation ρi occurs in the the direct sum decomposition of ρ.

Here is the promised converse to the first proposition of this lecture.

Corollary 4.4.11 If ρ and ρ′ are two representations of a finite group G and the characters χ and

χ′ of ρ and ρ′ respectively satisfy χ = χ′, then ρ is equivalent to ρ′.

Proof. Let mi denote the number of copies of ρi in the direct sum decomposition of ρ into irre-

ducibles and let m′i be defined similarly for ρ′. If χ = χ′, then 〈χ, χi〉 = 〈χ′, χi〉 for all i = 1, . . . , r

and hence mi = m′i for all i. It follows that

ρ ∼ m1ρ1 ⊕ · · · ⊕mrρr = m′1ρ1 ⊕ · · · ⊕m′rρr ∼ ρ′.

Corollary 4.4.12 If χ is the character of a representation ρ of a finite group G, then 〈χ, χ〉 = 1 if

and only if χ is irreducible.

Proof. We know from theorem (4.4.6) that if χ is irreducible, then 〈χ, χ〉 = 1. Conversely, if

〈χ, χ〉 = 1, then if we write χ =
∑
niχi as in corollary (4.4.10), then we have

n2
1 + · · ·+ n2

r = 1.

Since ni ∈ Z for all i, the only solution to this equation is exactly one ni = 1 and the rest equal to

zero. Hence χ = χi is irreducible.

Corollary (4.4.12) is a practical way of checking the irreducibility of a given representation, as the

following examples show.

Example 4.4.13 The standard representation R : D4 → SO3 is easily seen to be reducible. We

can also see this by computing

〈χ, χ〉 =
1
8

(9 + 1 + 1 + 1 + 1 + 1 + 1 + 1) = 2.

Example 4.4.14 The 2-dimensional representation B : D4 → SO2 is irreducible. To see this, we

compute

〈χB , χB〉 =
1
8

(4 + 0 + 0 + 4 + 0 + 0 + 0 + 0) = 1.
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Example 4.4.15 Let us determine the possible dimensions of the irreducible representations of D4.

We know D4 has 5 conjugacy classes, and therefore D4 has 5 irreducible representations, ρ1, ρ2, ρ3, ρ4

and ρ5, by part (2) of theorem (4.4.6). If di = dim ρi, then part (3) of the same theorem implies

that each di is a divisor of |D4| = 8 and
∑
d2
i = 8. The only possible solution to this equation is

8 = 1 + 1 + 1 + 1 + 4 and hence D4 has four 1-dimensional irreducible representations ρ1, ρ2, ρ3, ρ4

and one 2-dimensional irreducible representation ρ5. We have seen that B : D4 → SO2 is an

irreducible 2-dimensional representation so that it is the matrix representation of ρ5 in some basis.

Every group has the trivial 1-dimensional representation (ρg(α) = α for all α ∈ C) which we will

always denote by ρ1. The matrix representation A : D4 → {±1} is the matrix representation of

the sign representation ρ2. The remaining two 1-dimensional representations ρ3 and ρ4 have matrix

representations Cx = −1, Cy = 1 and Dx = −1, Dy = −1 respectively.

Example 4.4.16 As one last example, let’s try to find all irreducible representations of the sym-

metric group S4. Now, S4 has five conjugacy classes, and hence five irreducible representations.

These five classes are represented by the identity 1 ∈ S4 along with the following four elements:

y =

 1 2 3 4

2 1 3 4

 , z =

 1 2 3 4

2 3 1 4

 ,

x =

 1 2 3 4

2 3 4 1

 , x2 =

 1 2 3 4

3 4 1 2

 .

The orders of these conjugacy classes are |C1| = 1, |Cy| = 6, |Cz| = 8, |Cx2 | = 3 and |Cx| = 6. We

will always list the conjugacy classes in the order 1, y, z, x2, x so that the class equation for S4 is

24 = 1 + 6 + 8 + 3 + 6.

Now, S4 has the trivial 1-dimensional representation ρ1 and the sign permutation ρ2. We also have

the 3-dimensional representation

S4
∼ - O

R - SO3

which we have claimed to be irreducible (here, O is the rotational symmetry group of the cube).

Let’s prove this claim by computing the character χ. First, we choose an isomorphism S4 → O, by

placing a cube in R3 and labeling the four diagonals as shown here.

The permutations x, y ∈ S4 correspond to the rotations x and y in our previous example (section

1). The permutation z corresponds to the rotation through 2π/3 radians in the diagonal labeled 4
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Figure 4.2: If we label the four diagonals as shown, the permutations x, y ∈ S4 correspond to the

rotations x and y in our previous example (section 1).

(CCW viewed from (1,−1,−1)). The matrices in the standard basis for R3 are

Ry =


0 1 0

1 0 0

0 0 −1

 , Rz =


0 −1 0

0 0 1

−1 0 0



Rx =


1 0 0

0 0 −1

0 1 0

 , Rx2 =


1 0 0

0 −1 0

0 0 −1

 .
Therefore we have

χ(1) = 3, χ(y) = −1χ(z) = 0, χ(x2) = −1, χ(x) = 1.

Now, if we remember that the conjugacy classes have 1, 6, 8, 3 and 6 elements, we can compute

〈χ, χ〉 =
1
24

(9 + 6 · 1 + 8 · 0 + 3 · 1 + 6 · 1) = 1

and hence R is irreducible.

Now, using the the orthogonality relations (4.4.6), we know that 24 = 1 + 1 + d2
2 + d2

3 + 9, where

d2 and d3 are the dimensions of the remaining two irreducible representations. The only solution

to this equation is d2 = 2 and d3 = 3 so that S4 has another 3-dimensional representation and one

irreducible 2-dimensional representation.

To find the other 3-dimensional representation, we consider the 4-dimensional permutation repre-

sentation ρ : S4 → GL4(C). Since the inverse of a permutation matrix is its transpose, this repre-

sentation is unitary. The subspace spanned by the vector (1, 1, 1, 1) is S4-invariant, and hence so is

the perpendicular space V . The restriction ρ : S4 → GL(V ) is a three dimensional representation
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whose matrices in the basis ((1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1)) are

R′y =


−1 −1 −1

0 1 0

0 0 1

 , R′z =


−1 1 −1

1 0 0

0 0 1



R′x =


−1 −1 −1

1 0 0

0 1 0

 , R′x2 =


−1 −1 −1

0 0 1

0 1 0

 .
Now we compute

〈χ′, χ′〉 =
1
24

(9 + 6 · 1 + 8 · 0 + 3 · 1 + 6 · 1) = 1

so that R′ is irreducible. Moreover χ 6= χ′ so that R′ is a new 3-dimensional irreducible repre-

sentation. It remains to find the 2-dimensional irreducible representation, but alas, we’re out of

time!
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