Lecture Notes For

Mathematics 150A

Dr. Tyler J. Evans

Fall 2000



Contents

1 Preliminaries

1.1 Lecture 1: Sets and mappings . . . . . . . . . . . . . oL
1.2 Lecture 2: Matrices . . . . . . .« . o i i i e e e e e e e e e e e
1.3 Lecture 3: Permutations and permutation matrices . . . . . .. . ... ... ... ..
1.4 Lecture 4: Complex numbers . . . . . . .. . .. ... e

2 Elements of Group Theory

2.1 Lecture 5: The definitionofagroup . . .. ... ... ... ... .. ... ... ...
2.2 Lecture 6: Elementary properties of groups . . . .. .. ... ... ... ......
2.3 Lecture 7: Subgroups. . . . . . . . . L e e e
2.4 Lecture 8: Subgroups of the group Z* . . . . . ... .. ... ... .. ... ...
2.5 Lecture 9: The dihedral groups D,,. . . . . . . . . o o oo o e
2.6 Lecture 10: Homomorphisms . . . . . . . . . . .. . ... ... ...
2.7 Lecture 11: Isomorphisms . . . . . . . . . . . . . . . 0 e e
2.8 Lecture 12: Cosets . . . . . . . . . . o i e e
2.9 Lecture 13: Products of groups . . . . . . . . . . . ...
2.10 Lecture 14: Quotient groups . . . . . . . . . . . . oL e
2.11 Lecture 15: An example of quotient groups—modular arithmetic . . . .. .. .. ..

3 Vector Spaces

3.1 Lecture 16: Real and complex vector spaces . . . . . . . . . . . . ..o
3.2 Lecture 17: Abstract fields . . . . . . . . . . . . . .. .. e
3.3 Lecture 18: Bases and dimension . . . . . . . . . . . . . e

ey

co ot W K



3.4 Lecture 19: Computations with bases . . . . ... ... .. ... .. ......... 56

Linear Transformations 60
4.1 Lecture 20: The rank-nullity theorem . . . . . . . .. .. .. ... ... .. ...... 60
4.2 Lecture 21: The matrix of a linear transformation . ... ... .. ... ... .... 63
4.3 Lecture 22: Eigenvectors . . . . . . . . . . . Lo 65
4.4 Lecture 23: The characteristic polynomial . . . . . ... ... ... ... ....... 67
4.5 Lecture 24: Diagonalization . . . . . . . .. . .. .. ... ... . 70
Index 73

ii



CHAPTER 1. MATHEMATICS 150A - FALL 2000 1

Chapter 1

Preliminaries

1.1 Lecture 1: Sets and mappings

We assume that the reader is familiar with the language and elementary properties of sets and
functions between sets. For convenience and completeness, we briefly recall some of the material
that will be prevalent in our everyday work.

For notation, we will denote sets with capital letters A, B, ... and write a € A if a is an element of
the set A. If all of the elements of a set B are also elements of a set A, then we say B is a subset
of A and we write B C A. Every set has a subset consisting of no elements called the empty set,
and we denote this subset by 0. If A is any set, then both A and () are improper subsets of A. If
B is a non-empty subset of A but B # A, then we write B C A and we say B is a proper subset
of A. We will work repeatedly with familiar sets of numbers so that we fix the following notations

once and for all:

denotes the set of integers.
denotes the set of rational numbers.

denotes the set of real numbers.

0 ® © N

denotes the set of complex numbers.

The superscript x will always mean the subset of non-zero elements of these sets so that Z* is the
set of non-zero integers, etc....

Two basic operations on sets are union and intersection. If A and B are sets, then the union of A
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and B is the set
AUB={z:z € Aor z € B}
and the intersection is the set
ANB={z:z € Aand z € B}.

A function or a mapping from a set A to a set B is a rule or correspondence written f: A — B
that assigns to each element a € A a unique element b = f(a) € B. If C C A and D C B, then we

have two important subsets
f(C)={f(c):ceC}C B
and
f7i(D)={acA:fla)eD}C A

called the image of C and the inverse image of D respectively. A function f : A — B is called
one-to-one or injective if f(a) = f(a') implies a = a’. We say f is onto or surjective if f(A) = B.

If f is both injective and surjective, we say f is bijective.

Example 1.1.1 The function f : R — R defined by f(x) = x2 is neither injective nor surjective.
Here the image f(R) = {y € R:y = 2?} = {y € R : y > 0}. The function g : R — R defined by
3

g(z) = 23 is a bijection.

If A and B are two sets, then the cross product of A and B is the set
Ax B={(a,b):a € Aandbe B}.

A binary operation on a set A is a function p: A x A — A. We usually write the image p(a,a’)
simply as aa’ and we refer to p as a multiplication on A. Note that g may or may not have
anything to do with ordinary multiplication or real or complex numbers! Indeed, the set A may not
even be a subset of C.

We conclude this lecture by recounting the very important notion of an equivalence relation. Recall
that a relation R on a set A is a subset of the cross product A x A. We write a ~ b if (a,b) € R

and sometimes just refer to the relation ~. A relation is called reflexive if a ~ a for all a € A;
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symmetric if a ~ b implies b ~ a; and transitive if a ~ b and b ~ a implies a ~ c. A relation R
that is simultaneously reflexive, symmetric and transitive is called an equivalence relation on A.
Recall a partition of a set A is a collection of disjoint subsets of A such that each element of A
belongs to one and only one of the subsets. These subsets are called the cells of the partition. The

relationship between equivalence relations and partitions is summarized in the following theorem.

Theorem 1.1.2 If A is a non-empty set and ~ is an equivalence relation on A, then the collection

of subsets
a={zcA:z~a}

forms a partition of A. Moreover, given a partition of A, the relation ~ defined on A by a ~ b if
and only if a and b belong to the same cell is an equivalence relation on A whose induced partition

is the given one.

Proof. Exercise. [
The cells @ are called equivalence classes and a € @ is called a representative of the equivalence

class @. The set of all equivalence classes for a given equivalence relation ~ is denoted A/ ~.

Example 1.1.3 Fiz a positive integer n and define a relation ~, on Z by a ~y b iff. n|(a —b).
Then ~y, is an equivalence relation on Z and we write Z, = Z/ ~n. Note that the equivalence class
a for a € Z consists of all integers b € Z with the same remainder when divided by n. In particular

we have

1.2 Lecture 2: Matrices

In this lecture, we wish to briefly recall the essentials of matrix algebra. Matrices will serve as a
primary source of examples in the (near) future so that is is imperative that each student have a
firm grasp of the material presented here.

If m and n are positive integers, then the rectangular array

a1 - A1n

Gm1 e Amn
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of mn numbers a;; is called an m x n matrix with entries a;;. We call the matrix A rational, real
or complex if the entries come from @Q, R or C respectively. The indices ¢ and j in a;; are called
the row and column indices respectively. We sometimes use the shorthand notation A = [a;;] to
denote the matrix A. If A = [a;;] and B = [b;;] are two m x n matrices, then their sum is the m xn
matrix A+ B whose (ij)-entry is a;; + b;;. If o € C, then oA is the m x n matrix whose (ij)-entry
is aa;;j. oA is called a scalar multiple of A.

We also recall here the definition of matrix multiplication. If If A = [a;;] is an m X n matrix and

B = [b;;] is an n X p matrix, then the product C' = AB is defined to be the m x p matrix with

(ij)-entry
n
cij =Y irbyj.
k=1

That is, the entry c;; is computed by taking the ordinary dot product of the i** row of A with
the j*® column of B. We note that in general, matrix multiplication is not commutative. That is,
AB # BA.

For any positive integer n, we let I, denote the n x n identity matrix whose (ij)-entry is J;; (the

Kronecker delta). That is,

10 0
01 0
I, =
00 1

We summarize the basic properties of matrix algebra in the following theorem. The proofs are left
to the reader. In the statement of the theorem, we assume that the matrices involved are shaped

appropriately so that all operations make sense.

Theorem 1.2.1 If A, B and C are matrices and «, 3 are scalars, then:

(1) A+ B =B+ A; (6) (A+ B)C = AC + BC;
(2) (A+B)+C=A+(B+C); (7) (AB)C = A(BC);

(3) a(A+ B) = aA + aB; (8) AL, = I, A = A;

(4) (a+B)A=aA+ BA; (9) a(AB) = (aA)B = A(aB);

(5) A(B+C) = AB + AC; (10) (aB)A = a(BA).
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We conclude this lecture by recalling the very important notion of determinant. First, if A = [a11]

is 1 x 1, define det A = a;;. Next, if

then we define det A = aj1a92 — aj2a21. Finally, if A is an n x n matrix, we inductively define
det A =a11411 — a12di2 + - £ aiplin

where A;; is the determinant of the (n — 1) x (n — 1) matrix obtained from A by deleting the i*!
row and j*! column. If we denote the set of all n x n matrices (with real entries) by R**", then we

can think of the determinant as a function
det : R™*™ 5 R.

We recall the following properties of the function det, all of which can be deduced from the previous

definition.
Theorem 1.2.2 If A and B are n X n matrices and « is a scalar, then:
1. det(AB) = det Adet B.
2. detl, =1.
3. det A = det AT where AT is the transpose of A.
4. A is invertible iff. det A# 0 and det(A~!) =1/det A.
5. Interchanging two rows or columns of A multiplies det A by —1.
6. Multiplying a row of A by a scalar o multiplies det A by a.

7. Replacing a row with the row plus a scalar multiple of another row does not change det A at

all.

1.3 Lecture 3: Permutations and permutation matrices

The purpose of this lecture is to once again provide a rich source of examples for us once we begin
studying our first topic—group theory. In addition to the matrix groups, another deep source of

examples of groups are groups of permutations.
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Definition 1.3.1 If S is a set, a bijection p: S — S is called a permutation of S.

Example 1.3.2 If S = {1, 2,3}, then the mappingp: S — S defined by

1 = 2
2 - 3
3 —» 1

is a permutation of S.

Proposition 1.3.3 Ifp,q : S — S are permutations, then pqg = p o q is also a permutation of S.
The identity map 1s : S — S defined by 15(s) = s for all s € S is a permutation. If p: S — S is a

permutation, then there is a unique permutation q : S — S such that pqg = gp = 1g.
Proof. Exercise. ]

Definition 1.3.4 A permutation matrix is a matriz P such that left multiplication by P is a
permutation of the rows of the matriz. That is, the rows of PA are precisely the rows of A in some

order.

Example 1.3.5 Let P be the 3 X 3 matriz defined by

0 01
P=|1100
010

Then we note for any column vector (x1,z2,z3)T, we have

0 0 1 1 T3
1 00 T2 | = | T
010 T3 T2

Notice that the entry in the first position is sent to the second, the entry in the second position is
sent to the third and the entry in the third position is sent to the first. Thus the matrix P acts
Just like the permutation of {1,2,3} in our previous example. This is why P is called a permutation

matriz.

A very important remark is in order here. Namely, when we permute the entries of a vector

(z1,--.,2,)T with a permutation p, the indices are permuted in the opposite way. For example, for
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the permutation p above, the indices of the vector (z1,z2,73)T are permuted

1 — 3
2 = 1
3 = 2

which is just the inverse of the permutation p. Therefore there are two ways to associate a permu-
tation p of the set {1,...,n} to an n X n permutation matrix P: p is the permutation that describes
how P permutes the entries of the vector or p is the permutation that describes how P permutes

the indices of the entries. These two permutations are inverse to each other. We choose the former

so that if P is a permutation matrix and X = (z1,...,7,)T is a vector, we have
Tp-1(1)
PX =
Tp=1(n)

We let e; denote the vector in R® with a single 1 in the " entry and 0 elsewhere. The collection

{e1,...,en} is called the standard basis for R”. We then have the following proposition.

Proposition 1.3.6 Let P be the permutation matriz associated with the permutation p.
1. The j* column of P is the vector €p(j)-

2. P is the sum of n matrix units: P = 2?21 ep(j)j-

Proof. (1.) By definition of matrix multiplication, the product Pe; is just the j* column of P.
However, since p is defined by permuting the entries of the vector on which P acts, we see that Pe;
is also a standard basis vector whose non-zero entry is in the p(5)*® position by definition. That is
Pej = ey;) and (1) follows.

(2) This is obvious from (1) since by definition, e;; is the n x n matrix with all entries zero except
the (ij)-entry which is a 1. |
‘We remark that one corollary of this proposition is that every permutation matrix P can be obtained

from I,, by applying the corresponding permutation p to the rows of I,,.

Proposition 1.3.7 1. If p and q are permutations with permutation matrices P and @ respec-

tively, then the permutation matriz of the permutation pq is the matriz product PQ.

2. A permutation matriz is invertible and P~! = PT.
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Proof. The notation pg means composition of functions so that in particular we have

Since the matrix P operates by permuting the rows according to p and () operates by permuting
the rows according to g, the associative law for matrix multiplication tells us that PQ will operate

by permuting the rows according to pg:
(PQ)X = P(QX).
Therefore the matrix of pg is PQ. The proof of (2) is left as an exercise. ]

Definition 1.3.8 Using a familiar property of the determinant and (2) from the previous theorem,
it is easy to see that det P = £1 for all permutation matrices P. Therefore we define the sign of a

permutation p to be the determinant of the permutation matriz the represents P. That is
signp = det P = +£1.

A permutation p is called even if signp = 1 and odd if signp = —1.

1.4 Lecture 4: Complex numbers

In this final preliminary lecture, we briefly recall some elementary facts about the complex plane
C. First, we recall that it is natural to identify C with the usual Euclidean plane R? under the
correspondence (z,y) > z = x + iy. The (real) number z is called the real part of the complex
number 2z and the (real) number y is called the imaginary part of z. We can therefore consider
the real numbers R as a subset of C; namely R consists of all those complex numbers with zero
imaginary part. If 2; = 1 + ty2 and 23 = x5 + 1y2 are two complex numbers, then we define their

sum and product by
21+ 22 = (21 + @2) +i(y1 + ¥2)
and
z122 = (T122 — Y1y2) +i(T1y2 + Z201)-

Note that the product formula is derived by formally multiplying out and using the relation i2 = —1.
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If z = x4+ iy € C, we define the complex conjugate of z as z = ¢ — ty. Note that z =Z iff. z € R.
We define the norm (or length or modulus) of z to be the real number |z| = /22 + y2 = v/2Z.
Geometrically, the norm of z is the distance from z to the origin in the plane. It is easy to show that
if z # 0, then 2= = Z/|z|%. If 0 is the angle made between 2z and the positive z-axis (f is measured

counter-clockwise), then the polar form of the complex number z is
z = |z|(cosf + isin6).
It is easy to show, using familiar trigonometric identities, that
2122 = |z122](cos(01 + 62) + isin(0; + 65))

so that in multiplying two complex numbers, we simply multiply their lengths and add their angles.

We usually write e?? = cos@ + isin# so that in this notation we have z = |z|e?’ and
1(91 +02).

2122 = |z122]e

Note that if z = re®®, then 2" = r™e™. In particular, the solutions of the polynomial 2" = 1

must all have the form &, = e2™**/™ for k = 0,1,...,n — 1. The elements of the collection U,, =
{1,&1,...,&, 1} are called the n'" roots of unity. U, will be an important example for us in the
future.

Let S! = {z € C: |z| = 1} denote the set of complex numbers z that have length 1. S is called the
unit circle or the 1-sphere. Note that U,, C S! for every n > 1. n fact, U, can be visualized as
n equally spaced points on S'. We close this lecture by remarking that the formula |zw| = |2||w]

shows that S is closed under multiplication.
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Chapter 2
Elements of Group Theory

2.1 Lecture 5: The definition of a group

Before we become weighted down with details, let us look ahead and discuss briefly what our sub-
ject matter is all about. In abstract algebra, the test of time has shown that certain operations
on sets, that is ways of combining two elements of the set to get a third, have great importance in
many branches of mathematics. By studying the essential common properties of these operations
abstractly, it is possible to prove general theorems that when applied to a specific concrete situation
expose deep insight into the matter at hand that would have otherwise been obscured by the abun-
dance of extraneous information. The operations and properties that are essential to the system are
discovered over time by noticing similar behaviors in different concrete situations. For example, the
notion of a group (our first topic of study) arose in case after case in special problems throughout the
end of the eighteenth and the beginning of the nineteenth centuries. Some of these problems were
about matrices and permutations. The abstract notion of a group was not introduced until relatively
late in the nineteenth century however. To quote I.N. Herstein, “Amongst mathematicians, neither

the beauty nor the significance of the first example we have chosen to discuss—groups—is disputed”.

Definition 2.1.1 Let S be a non-empty set. A function p: SxS — S is called a binary operation

on S or a law of composition on S.

We usually do not use the functional notation p(a, b) to denote the image of the pair (a,b) under p.

Rather, we choose a symbol to denote the operation and write a and b on either side of this symbol.
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Sometimes we simply juxtapose a and b. Therefore the notations ab,a+b,a*xb,a0b,a-b,... may all
be used to denote the element p(a,b) € S. Furthermore, we will often refer to the binary operation
as the symbol itself. That is, we may say “let S be a set with a binary operation *” as opposed to

“let S be a set with a binary operation y:S xS — S.

Example 2.1.2 1. Let S = Z denote the set of integers and define p(n,m) =n+ m. That is p

is just ordinary addition of integers.

2. Let S = R* be the set of non-zero real numbers and define p(a,b) = ab. Then p is a binary

operation.
3. Ordinary matriz multiplication u(A, B) = AB is a binary operation on the set S = R"*",

4. Let Aut(S) denote the set of all permutations of S and define p : Aut(S) x Aut(S) — Aut(S)

by n(p,q) = poq (function composition). Then p is a binary operation on Aut(S).

Definition 2.1.3 Let S be a non-empty set and p a binary operation on S written u(a,b) = ab.

Then we say i ts associative if for all a,b,c € S:
(ab)e = a(be).
We say p is commutative if for all a,b € S:
ab = ba.

All of the binary operations in the above example are associative, but only the first two are commu-
tative. We remark that if a binary operation is associative, then we can show using mathematical

induction that the expression
al a2 ... an
is unambiguous for all positive integers n.

Definition 2.1.4 If S is a non-empty set with a binary operation, then an element e € S is called

an identity for the operation if
age=ea=a

foralla e S.
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Proposition 2.1.5 An identity for a binary operation on S is unique.

Proof. Suppose that both e and €’ are identities. Then since e is an identity, e’ = €’. Similarly,
since €' is an identity ee’ = e and it follows that e = ¢'. ]
If the binary operation on S is written ab, we will sometimes use the symbol 1 to denote the identity

element in S. We will use the symbol 0 if the operation is written a + b.

Example 2.1.6 Each of the four binary operations above has an identity. They are respectively

0€Z, 1eR*, I, e R"*" and 15 € Aut(S).

Definition 2.1.7 Suppose that S is a set with a binary operation with an identity e. An element

a € S is called invertible if there exists an element a’ € S such that

As mentioned at the outset of this lecture, mathematicians at the turn of the nineteenth century
were busy studying different sets with different binary operations that had certain properties in
common. Eventually, the essential properties from all of these examples were distilled down into the

following abstract definition.

Definition 2.1.8 (Group) A group (G, %) is a non-empty set G together with a binary operation

* on G such that the following three axioms hold:

G1. The binary operation * is associative.

G2. There is an identity element e € G.

G3. FEvery element g € G has an inverse.

Example 2.1.9 We have already discussed many examples of groups. Let’s list a few here.
1. G = Z with the usual addition. (or G = Q,R,C)
2. G = Q* with the usual multiplication. (or G =R*,C*)

3. G = GL,(R) is the set of invertible n x n matrices with real entries under usual matriz
multiplication. (or G = GL,(Q),GL,(C)) The groups GL,, are called the general linear

groups.
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4. G = Aut(S) under composition of functions.

Note that the set of positive integers does not form a group under addition as there is no zero
element. Note that the set R"*™ of n X n matrices is not a group under multiplication since every
element does not have an inverse. However, R"*™ is a group under matrix addition. In the next
lecture, we will investigate the elementary properties of a group G that follow immediately from the

definition. After this, we will look at these interpretations of these results in our known examples.

2.2 Lecture 6: Elementary properties of groups

In this lecture we see what properties of groups we can deduce from the definition as well as introduce
more examples of groups. We will (slightly) abuse notation and refer to a group G rather than (G, *).

Also, we will write the product of two elements a and b in an arbitrary group as ab.

Proposition 2.2.1 IfG is a group, then the identity element e is unique. If g € G, then the inverse

of g is unique.

Proof. We have already seen that the identity element of a binary operation is unique. If g’ and
g" are both inverses to g, then multiplying the equation e = gg’ on the left by ¢” and using the

associative law gives

"

9" =9"(99") = (9"9)d' =egd =4

1 1 _ 1

We will denote the inverse of an element g € G by g~ * so that gg~* =g g =e.
Definition 2.2.2 A group G is abelian if ab = ba for all a,b € G.

Example 2.2.3 The groups ZT,QT,RT,Ct,Q*,RX,C* are all abelian. Here the 4+ means the
binary operation is the usual addition. The groups GL,(Q), GL,(R), GL,(C) are not abelian.
If G is a group and g € G, then the associative law makes the expression

n

unambiguous for positive integers n. If we further define g° = e and g=" = (g7 !), it is easy to see

that we have the familiar rules of exponents:

gngm — gn+m and (gn)m — gnm
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It is not a good idea to use fraction notation a/b in a group since if G is not abelian, we do not know
if a/b means b la or ab ! and these elements need not be the same. We leave it as an exercise to
show that (ab) ! = b la~! for all a,b € G and more generally if a1,...,a, € G, then

(araz---an) ' =a;' - a5yt

The following two theorems are useful for computations in a group.

Theorem 2.2.4 (Cancellation Laws) If G is a group and a,b,c € G satisfy ab = ac, then b = c.

Similarly if ba = ca, then b= c.

Proof. If ab = ac, then multiplying on the left by a~! and using the associative law shows that

(a='a)b = (a~'a)c so that b = c. The right cancellation law is left as an exercise. [

Theorem 2.2.5 If G is a group and a,b € G, then the equations ax = b and ya = b have unique

solutions in G.
Proof. Let a,b € G and define x = a~'b. Then z € G and
ax =a(a ') =(aa Hb=eb=b

so that z is a solution to ax = b. This shows existence. If z; and x5 are both solutions to ax = b,
then ax; = b = axs so that x1 = z2 by the cancellation law and therefore our solution is unique.
The existence and uniqueness of solutions to ya = b is left as an exercise. ]

We conclude this lecture with an example that will be of great importance throughout our course.

Example 2.2.6 Let us denote the set of permutations of the set {1,2,...,n} by S,. We know S,
is a group under the binary operation of function composition. Note that there are n! elements in
Sn. The structure of S,, becomes very complicated as n gets large. We want to look at the case

n = 3. Recall the 3 X 3 permutation matrix

0 01
z=|(1 0 O
010

which permutes the entries of the vector (v, vs,v3)T cyclicly by 1+ 2 + 3+ 1. We let y be the
permutation that interchanges the first two entries and fixes the third:
0 10
y=|(1 0 0
0 01
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The reader can verify that the 3! = 6 permutations of {1, 2, 3} are
53 = {17 zZ, :1:27 Y, Ty, $2y}

Remember the “1,2,3” in {1,2, 3} represent the entries positions of the vector, not the indices. A
hint for this exercise is to show that z2 = 1,92 = 1 and yz = x%y. Together these rules let you write
any product for z and y as xd yi with 0 < j <2 and 0 <7 < 1. Since there are only 6 elements in
S3, your done as soon as you show these six are all distinct. We remark that this is our first explicit

example of a finite group, and it is not abelian. We will see that S3 is the smallest non-abelian finite

group.

2.3 Lecture 7: Subgroups

An important principle in mathematics is that one can gain insight into the structure of an object
by studying subsets of that object that are themselves the same type of object. We do this now in

the case that the object is a group.

Definition 2.3.1 (Subgroup) IfG is a group, a non-empty subset H of G is called a subgroup of
G if H is itself a group under the induced operations in G. If H is a subgroup of G, we write H < G
and H < G if H # G. Of course H = G is a subgroup of G called the improper subgroup. Also,
then set H = {e} consisting of the identity element alone is a subgroup called the trivial subgroup.

Any other subgroup {e} C H C G is called proper.

Example 2.3.2 1. Let SL,(R) denote the subset of GL,(R) that consists of all matrices A €
GL, (R) such that det A = 1. Then SL, (R) is a subgroup of GL,(R) called the special linear

group over R
2. The subset S! of complex numbers of length 1 is a subgroup of C*.
3. The n'® roots of unity U, are a subgroup of C*.
4. The set of positive integers is not a subgroup of Z.

5. The set S! is not a subgroup of C*.

The following theorem is useful in showing a subset of a group G is a subgroup. In fact, it is the

definition of subgroup given in your text.
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Theorem 2.3.3 A subset H of a group G is a subgroup of G if and only if
1. H is closed under the binary operation in G. That is, if a,b € H, then ab € H.
2. The identity element e € H.
3. For every element a € H, the inverse a~' € H.

Proof. (=) If H is a subgroup of G, then in particular H is a group under the binary operation
in G so that H is closed under this operation. Moreover, since H is non-empty, there must be an
element a € H so that a=! € H since H is a group and hence aa~! = e € H. Finally condition (3)
follows immediately since H is a group.

(<=) Suppose that (1), (2) and (3) hold. Then H has a binary operation by (1) and this operation
is associative since G is a group. Conditions (2) and (3) are precisely the second and third group
axioms respectively so that H is a group under the induced operation from G and hence H is a

subgroup by definition. ]

Definition 2.3.4 If G is a group and the set G, is finite, then we say G is a finite group. If G is
a finite group, the order of G is the number of elements in G. The order of G is denoted by |G|. If

G is not a finite group, we say the order of G is infinite.
Example 2.3.5 Let A,, denote the subset of S,, that consists of all even permutations. That is
Ap={p€ Sy, :signp=1}

We claim A, is a subgroup of S,, called the alternating group. We will prove this using our new
theorem. First, suppose that p,q € A,, and let P and @ be the corresponding permutation matrices.
We know the permutation matrix for pq is PQ and moreover, det(PQ) = det PdetQ =1-1=1
so that sign(pq) = 1. Therefore A,, is closed under the binary operation in S,. The matrix of the
identity permutation is I,, and det I, = 1 so that the identity permutation is in A,,. Finally, we
know that the matrix for the permutation p is P~! = PT and det P = det PT so that if p € A,

p~! € A, and hence 4,, < S, as claimed.

We end this lecture with a discussion of a very important class of subgroups called cyclic subgroups.
If H < G and a € H, then by our theorem, we see that a™ € H for every integer n. That is a

subgroup containing a must contain the set

{a" :n € Z}.
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Note that this set need not be infinite. Indeed if a = z € S3, this set has the three elements {1, z, z*}

precisely because 2 = 1. We are hinting around the following theorem.

Theorem 2.3.6 If G is a group and a € G, then the set
H=(a)y={a":n€eZ}

is a subgroup of G and is the smallest subgroup of G that contains a. That is, every subgroup K of

G that contains a also contains {(a).

Proof. To prove the first assertion, note that a”a™ = a™*t™ so that (a) is closed under the binary
operation in G. Also, a® = e € (a) by definition. Finally, if a™ € (a), then (a") ' =a " € (a) so
that (a) is a subgroup. It remains to show that it is the smallest subgroup containing a. But our
remarks before the theorem show that if K is a subgroup containing a, then (a) C K and this is

precisely what it means to be the smallest subgroup containing a. [

Definition 2.3.7 If G is a group and a € G, the subgroup (a) is called the cyclic subgroup
generated by a. The element a is called a generator of (a). If the order of {a) is n, then we say
the element a has order n. Otherwise we say a has infinite order. We say that the group G is

cyclic if G = (a) for some a € G. In this case we say a generates G.

We remark that a cyclic subgroup generated by ¢ € G may be infinite or finite. Too see this, take
(1) <Z* and (z) < S3. Note that (e) = {e} is the trivial subgroup. The group Z* is cyclic. You can

check directly that the group Ss is not cyclic. This also follows from the following general theorem.
Theorem 2.3.8 If G is a cyclic group, then G is abelian.

Proof. If G is cyclic, then G = (a) for some a € G. Therefore two arbitrary elements of G have the

form a™ and a™ for some integers n, m and we compute

so that G is abelian. ]

1
Example 2.3.9 The reader can check that the matrix has order 6 in GL3(R) and hence
-1 0
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11
generates a cyclic subgroup of order 6. The matrix has infinite order however since

01

n
11 1 n
01 01

2.4 Lecture 8: Subgroups of the group Z*

We saw in the last lecture that the additive group Z* is cyclic with generator 1. In an additive
group, we usually write na = a+---+a (n times) instead of a™. Our first goal in the current lecture
is to show that all subgroups of Z* are cyclic. Our proof will depend on the following important

theorem from number theory. The proof is left to the reader.

Theorem 2.4.1 (Division with remainder) If n is a positive integer and m is an arbitrary in-

teger, then there exist unique integers q and r such that
m=nq+r
and 0 <r <n. ]
If n is a fixed integer, let
nZ = {a € Z : a = nk for some k € Z}.
Theorem 2.4.2 Every subgroup of the additive group Z* has the form nZ for some integer n.

Proof. We will leave the verification that nZ is a subgroup as an exercise. We therefore proceed to
show that every subgroup H < Z* is of this form. If H = {0} is the trivial subgroup, then H = 0Z
and we are done. Otherwise there is a non-zero element n € H. Without loss of generality, we
may assume that n is the smallest positive integer in H (why?). We claim H = nZ. Noting that
nZ = (n) we see that nZ C H. To show the opposite inclusion, let m € H be an arbitrary element
and write m = nq + r where 0 < r < n by division with remainder. Note that since n € H, nqg € H
so that r = m —nqg € H. But r < n and n is the smallest positive integer in H so that we must
have r = 0 and hence m = nqg € nZ. Therefore H C nZ and hence H = nZ. ]
Actually, our previous result is a special case of a more general theorem which states that any

subgroup of a cyclic group is cyclic. The proof given above is easily modified to prove
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Theorem 2.4.3 Every subgroup of a cyclic group is cyclic.

Sketch of proof. Let G = (a) and suppose H < G. If H is trivial, it is cyclic. Otherwise there
is an element a™ € H with n > 0. It follows that there is a smallest positive integer m such that

a™ € H. Show that (™) = H using Division with remainder. |
Proposition 2.4.4 Let n,m € Z be non-zero integers and define

nZ+mZ = {a € Z: a = nr + ms for some r, s € Z}.
Then nZ 4+ mZ is a subgroup of Z.

Proof. Exercise.
Now, the previous two theorems together imply that given two non-zero integers n and m, there
is a (positive) integer d such that dZ = nZ + mZ. The integer d is called the greatest common

divisor (gcd) of n and m. We state this formally as a proposition.

Proposition 2.4.5 If n and m are non-zero integers and d is the positive integer such that dZ =

nZ + mZ, then
1. There exist integers r and s such that d = nr + ms.
2. d divides n and m.

3. If e is another integer dividing both n and m, then e divides d.

Proof. Statement (1) simply asserts that d € nZ + mZ. Similarly, taking r = 1 and s = 0 shows
that n € dZ so that n = dk for some integer k so that d divides n by definition. Similarly d divides
m. Finally, if e divides n and m, then n = ek and m = el for some integers k£ and [. But then we

have
d =nr+ ms = ekr + els = e(kr + ls)

which shows that e divides d. ]
We conclude this lecture with a return to the topic of cyclic groups. Let G be a group and let

H = (a) be the cyclic subgroup generated by a € G so that

H=A-- ,a_2,a_1,e,a,a2,---}.
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If all of the elements in this list are distinct, then H is an infinite cyclic group. Otherwise we must

n—m

have a™ = a™ for some integers n and m with n > m so that x =e and n —m > 0. Therefore
there is a non-zero power of a equal to e. We want to show that the smallest such power is the order

of a.
Lemma 2.4.6 The set S of integers n such that a™ = e is a subgroup of Z.

Proof. If a® = e and a™ = e, then a"a™ = a™*™ = e too so that n +m € S. Clearly 0 € S and if

a™ = e, then a™™ = a7 ™a™ = e so that —n € S and hence S is a subgroup of Z. [

Proposition 2.4.7 Let G be a group and let a € G have finite order m. Then m is the smallest

ositive integer satisfying a™ = e. Moreover, a™ = e iff. m divides n.
)

Proof. By definition, the order of a is the order of the cyclic subgroup generated by a. By the
lemma, the set of integers n such that a™ = e is of the form m'Z. Of course m’ is the smallest
positive element of m'Z so that m’ is the smallest positive integer such that a™ =e. It follows that
the elements of the set {e, a,a?,...,a™ ~'} are all distinct. Moreover, if a™ € (a), then we can write

n=m'q+r with 0 <r < m’ so that

a® — am'q+r _ (am )qar —a"

so that a™ € {e,a,a?,...,a™ ~1}. It follows that (a) = {e,a,a?,...,a™ 1} and hence m’ = m is

the order of a by definition. Finally we note that a™ = e iff. n € mZ iff. n = mk iff. m divides n. m

2.5 Lecture 9: The dihedral groups D,.

In the last lecture, we were able to completely classify the subgroups of the additive group Z*. In
this lecture, we will study an family of subgroups of the symmetric group S, called the dihedral

groups. We begin with a slightly different way to view the group Ss.

Example 2.5.1 Recall that the group S; consists of the six permutations {1, z, 2, y, zy, %y} where
z is the cyclic permutation 1 — 2 +— 3 — 1 and y interchanges 1 and 2 while fixing 3. There is a
natural correspondence between the elements of S3 and the ways in which two copies of an equilateral
triangle with vertices labeled 1,2 and 3 (see Figure 2.1) can be placed with one on top of the other.

For this reason, S3 is sometimes also called the group of symmetries of an equilateral triangle.
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Figure 2.1: S3 is the group of symmetries of a labeled equilateral triangle. The cyclic permutation
x represents a rotation of the triangle through an angle of 27/3 radians counter-clockwise and the
transposition y represents a reflection of the triangle through the median passing through the vertex

3.

Note that if we label the vertices as in Figure 2.1, then z represents a rotation of the triangle through
an angle of 27/3 radians and y represents a reflection of the triangle through the median passing
through the vertex 3. In the same way, we can define D,, to be the group of symmetries of a regular
n-gon. D, will have n “rotational” symmetries which are all multiplies of a rotation through 27 /n
radians and n reflections through lines of symmetry. Therefore the order of D,, is 2n. Note that if

n > 3, then D, is a proper subgroup of S, since 2n < n!.

To clarify these matters, we will compute the group D, - the symmetries of the square. To do so,

we will introduce another notation for an element p € S,, that facilitates computations. If p € S, is

a permutation of {1,2,...,n}, we will write
1 2 ... n
p =
p(1) p(2) -+ p(n)

In this notation, the element x € S3 is written
1 2 3

2 31
‘We multiply two elements in this notation by composing the functions from right to left. For example,
we have

1 2 3 1 2 3 1 2 3
21 3 2 31 1 3 2
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This computation shows that the product yx is the reflection of the triangle in the median through

the vertex 1. The reader should explain this to him or herself geometrically. If we label the vertices

4 3

Figure 2.2: D, is the group of symmetries of a labeled square. There are four rotational symmetries

and 4 lines of reflection.

of a square as in Figure 2.2, then the 8 symmetries of the square are:

1 2 3 4 1 2 3 4
pPo — s M1 =

1 2 3 4 2 1 4 3

1 2 3 4 1 2 3 4
p1 = ) M2 =

2 3 41 4 3 2 1

1 2 3 4 1 2 3 4
p2 = ) 51:

3 4 1 2 3 2 1 4

1 2 3 4 1 2 3 4
p3 = , 02 =

4 1 2 3 1 4 3 2

We are naively using the notations p; for rotations, u; for mirror image in the lines through opposite
midpoints and §; for diagonal flips. In particular, pj is a rotation through 27k/4 radians counter-
clockwise and p} = pg = e. If we temporarily let p; = = and 6; = y, then we leave as an exercise the

verification that z* = 1, y?> = 1 and yz = 23y (where 1 denotes the identity permutation) so that
Dy = {1,11?, w2,:c3,y,:cy,:c2y,m3y}.

Compare this to our investigation of the group Ss (which happens to equal Ds3). Finally we remark

that the reader should explain to him or herself geometrically why both products yz and z3y are

equal to po in the naive notations.

Now, if we label the vertices if an n-gon counter-clockwise, then the permutations x,y € S,, defined

by

T = and y=
2 3 .- n 1 n—1 n—-2 ... 1 n
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satisfy the relations z” =1, y?> = 1 and yx = 2" 'y. It follows that for n > 3,
D, ={l,z,2% ..., z" 1y, zy, 22y, ..., .r"ily}.

Of course, geometrically x represents a rotation of the n-gon by an angle of 27 /n radians counter-
clockwise and y represents a reflection through the angle bisector of the vertex labeled n. The reader

is invited to investigate the group D, the symmetries of a “regular 2-gon”.

2.6 Lecture 10: Homomorphisms

In this section we begin to study the mappings between groups that are compatible with the group
structure. Such mappings are called homomorphisms and they are a central topic in abstract algebra.
In fact, a guiding principle in mathematics says that one can gain insight into the structure of an
object by studying the mappings of the object into itself that preserve the structure. In this lecture,
we will write all arbitrary groups multiplicatively and denote the identity elements with the symbol

1. We begin with the main definition.

Definition 2.6.1 (Homomorphism) If G and G’ are two groups, a mapping ¢ : G — G’ is called

a (group) homomorphism if for all a,b € G, we have

p(ab) = p(a)p(b).

A remark on this formula is in order. Namely, we are using the same notation to denote two
(possibly) different binary operations: the one in G and the one in G’. However, since ¢ : G — G',
there is no real ambiguity since ¢(a) and ¢(b) are both elements of G’ so that the product ¢(a)¢(b)
can only mean the group product in G'.

Here are some examples of homomorphisms defined on familiar groups. In each example, the reader

should carefully verify that the homomorphism property is valid for the defined function.

Example 2.6.2 1. Define ¢ : Zt — Z* by ¢(n) = 2n. Then ¢ is a homomorphism since for

any integers n, m € Z, we have
e(n+m) =2(n+m) =2n+2m = p(n) + o(m).

Note that we use additive notation in the homomorphism property since this is how we write

the group law in Z*.
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2. For any two groups G and G’, the map ¢ : G — G’ defined by ¢(a) = 1 foralla € Gis a
group homomorphism called the trivial homomorphism.

3. Let U = {1,—1} C C* be the subgroup of C* consisting of plus and minus 1 and define a
map sign : S, — Us from the symmetric group S, to Us sending a permutation p € S, to

signp. Then sign is a homomorphism.

4. A familiar property of the determinant shows that the map det : GL,(R) — R* is a homo-

morphism.

Now that we have seen a few examples of group homomorphisms, let us see what properties we can

deduce from the definition.
Proposition 2.6.3 If ¢ : G — G’ is a homomorphism from a group G into a group G', then
1. If1 € G is the identity, then (1) € G’ is the identity in G'.
2. Ifa € G, then p(a) ' = p(a™t).
3. If H < G is a subgroup of G, then o(H) < G' is a subgroup of G'.
4. If K < G’ is a subgroup of G', then ¢~}(K) < G is a subgroup of G.

Proof. (1) Note that for any a € G,

p(a) = pla-1) = p(a)p(1).

The cancellation law then implies that 1 = ¢(1).
(2) Note that

and similarly ¢(a=')p(a) =1 so that p(a™') = p(a)~! by uniqueness of inverses.

The proofs of (3) and (4) are exercises. [
If o : G — G' is a group homomorphism, we use the notation im ¢ in addition to ¢(G) to denote
the image of ¢. A group homomorphism is called injective, surjective or bijective according to
whether ¢ is injective, surjective or bijective as a map of sets. A bijective group homomorphism is

called an isomorphism. The last theorem can be summarized by saying that group homomorphism
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take identities to identities, inverses to inverses, subgroups to subgroups and the inverse image of a
subgroup is a subgroup.
Every group homomorphism ¢ : G — G’ has two important subgroups associated to it. One on

them is im ¢, and the other is ¢~!({1}).

Definition 2.6.4 If ¢ : G — G’ is a group homomorphism, we define the kernel of ¢, written
ker , to be the subset of G that is mapped to the identity in G'. That is

kero={a € G: p(a) =1}
Proposition 2.6.5 If o : G — G’ is a group homomorphism, then ker ¢ < G is a subgroup of G.
Proof. kerp = p=1({1}). m

Example 2.6.6 1. The kernel of the map ¢ : n — 2n from Z* to Z* is {0}.
2. The kernel of the trivial homomorphism G — G’ is G.

8. The kernel of the sign homomorphism sign : S,, — Uz consists of all permutations p € S,, such
that signp = 1. This is the set of all even permutations so that ker(sign) = A,,; the alternating
group.

4. The kernel of det : GL,(R) — R* consists of those matrices A € GL,(R) such that det A =1.

Thus ker(det) = SL,(R) is the special linear group. Note that this gives us another proof that
SL,(R) is a subgroup of GL,(R).

The kernel of a group homomorphism ¢ : G — G’ has another very important property. Namely,
if @ € ker p and b € G is any element, then the conjugate element bab~! is also in ker ¢. To see

this, just compute
o(bab™") = p(b)p(a)p(b) " = p(b)e(b) ™" = 1.
We abstract this property and make the following definition.

Definition 2.6.7 (Normal subgroup) A subgroup N of a group G is called normal if for every
a € N and every b € G, the conjugate bab~—! € N.
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As we have just proved, the kernel of a homomorphism is always a normal subgroup. In particular,
the alternating group A,, is a normal subgroup of S,, and SL,(R) is a normal subgroup of GL, (R).
Any subgroup of an abelian group is normal since bab~! = a in an abelian group. Subgroups of
non-abelian groups need not be normal. For an example, let H = (y) = {1, y} be the cyclic subgroup

of S3 generated by y. Then H is not normal since

zyr ' = zyz® = 2dyz = yz = 2%y ¢ H.

Definition 2.6.8 (Center) If G is a group, the subset
Z=7(G)={z€G:za=az forall a € G}

is called the center of G.

Proposition 2.6.9 The center Z(G) of a group G is a normal subgroup of G.

Proof. Exercise. [ ]

2.7 Lecture 11: Isomorphisms

Our limited experience with groups has already shown us that sometimes different looking groups
can behave algebraically the same. For example, the cyclic subgroup of D4 generated by the rotation
p1 is identical to the group Uy if we make the identification p; <+ ¢ where ¢ = €'™/2. Here we mean
much more than both of these groups have order 4. Indeed, we mean that this assignment preserves
the group structures as well. The goal of the current lecture is to make mathematically precise the

notion of two groups G and G’ being the same, or isomorphic. We begin by recalling the definition.

Definition 2.7.1 (Isomorphism) A group homomorphism ¢ : G — G’ is called an isomorphism
if ¢ is a bijection. If there exists an isomorphism ¢ : G — G', we say that G is isomorphic to G’

and we write G ~ G'.

Since an isomorphism is a bijection of the sets G and G’ which preserves the group structures, it
is clear that if G is isomorphic to G’, then we can think of G’ as the group G with the elements
renamed by .

Let us digress for a moment to discuss the notion of an inverse map. If f : A — B is a bijection

from a set A onto a set B, there is a natural map f~! : B — A which is also a bijection defined
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by reversing the arrows for the mapping f. That is, f~1(b) = a iff. f(a) = b. The map f~! is
called the inverse map to f. Do not confuse the inverse of a map with the inverse image of a set.
The former is defined only when the map f is a bijection whereas the latter is always defined. It is
clear that if f~! exists, then f~'o f =14 and fo f~! = 1g. We leave it as an exercise to show
that the inverse of a bijective group homomorphism is also a group homomorphism. If & denotes
the collection of all groups, the relation ~ on & defined by G ~ G’ iff. G is isomorphic to G’ is an
equivalence relation on &. We leave the proof of this fact to the reader.

The following proposition is useful in showing that a group homomorphism is injective.

Proposition 2.7.2 If ¢ : G — G’ is a group homomorphism, then ¢ is injective if and only if
ker o = {1}.

Proof. (=) We know 1 € ker ¢ and if ¢ is injective, then this is the only element of ker ¢.

(«<=) Suppose that ker ¢ = {1} and ¢(a) = ¢(b). Then we compute
p(ab™") = p(a)p(b) ™' =1

so that ab~! € ker ¢. Therefore ab~! =1 so that a = b and hence ¢ is injective as claimed. [ ]

To show that two groups G and G’ are isomorphic, you must:
1. Define a group homomorphism ¢ : G — G'.
2. Show that ker ¢ = {1}.
3. Show that im¢ = G'.

In practice this is usually easy to do if you have a feeling for why the two groups are isomorphic.

Let’s look at some examples.

Example 2.7.3 Let G = R* be the additive group of real numbers and let G’ = RZ, be the
multiplicative group of positive real numbers. Then G is isomorphic to G'. To see this, we first

define a map ¢ : G — G’ by

p(x) =e”.

Note that e > 0 for all z € R. Now, if z,y € R, then

oz +y) ="M = e = p(z)p(y)
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so that ¢ is a group homomorphism. Moreover, we note that if ¢(z) = 1, then e = 1 so that
z =In1 = 0 and hence ¢ is injective. Finally, given y € G’, we must have y > 0 so that z =lny € R

and easily ¢(z) = y.
Here is an important fact about infinite cyclic groups.
Theorem 2.7.4 Every infinite cyclic group is isomorphic to the additive group Z*.

Proof. Let H be an infinite cyclic group with generator ¢ and write the group operation in H

multiplicatively so that H = {a™ : n € Z}. This suggests that we should define a map ¢ : Z — H by

Note that if n,m € Z, then

p(n+m)=a""™ =a"a™ = p(n)p(m)

so that ¢ is a group homomorphism. Since H is infinite, a™

= e if and only if n = 0 so that
ker ¢ = {0} and hence ¢ is injective. Obviously ¢ is surjective so that ¢ is an isomorphism and the
proof is complete. u
Since isomorphism is an equivalence relation, this theorem implies that any two infinite cyclic groups
are isomorphic (they are both isomorphic to Z*). Therefore we will say that there is only one infinite

cyclic group up to isomorphism. We remark that this very powerful result is deduced from only basic

definitions. This fact is important enough to be stated again.
Corollary 2.7.5 Any two infinite cyclic groups are isomorphic. [ ]

What about finite cyclic groups? You already know an example of a cyclic group of order n for
every positive integer n, namely the n'® roots of unity U,. Another example is the cyclic subgroup
generated by the rotation of 27 /n radians in the dihedral group D,,. Are these two cyclic groups of
order n really different? An inspection of their multiplication tables shows that they are simply the

same group with different names for the elements. In particular, we have the following theorem.
Theorem 2.7.6 Any two cyclic groups of (finite) order n are isomorphic.

Proof. Since isomorphism is an equivalence relation, it suffices to show that if H is a cyclic group

of order n, then H is isomorphic to U,. Recall that as a set, U, = {1,&1,...,&,_1} where

ék — 627rik/n
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Recalling that H = {e,a,a?,...,a" '}, we can define a map ¢ : U, — H by ¢(£;) = a*. Since we
multiply in U,, and H by adding exponents (modulo n), the map ¢ is a homomorphism. Moreover,
 is obviously a bijection so that ¢ is a group isomorphism. ]
Now that we have talked about how to show two groups are isomorphic, we turn to the opposite
problem; how to show that two groups are not isomorphic. Let us say that any property preserved
by an isomorphism is a structural property of a group. That is if P is a structural property
and a group G has the property P, then any group that is isomorphic to G also has the property

P. You will be asked to show that the following properties are structural properties of a group.
1. The group is cyclic.
2. The group is abelian.
3. The group has order n.
4. The group has exactly two element of order 6.
5. The equation z? = @ has a solution for every a in the group.

Of course this is only a partial list of possible structural properties of groups. We end this lecture

with some examples of non-isomorphic groups.
Example 2.7.7 1. The group Uy is not isomorphic to the group Dy since |Uy| =4 and |Dy4| = 8.

2. Both the groups Us and S3 have order 6, but they cannot be isomorphic since Uy is abelian

whereas S3 is non abelian.

3. Note that in the multiplicative group of real numbers, the equation z? = a has a solution
x = \/a for every a. However, the equation 22 = 2 has no solution in the multiplicative group

of positive rational numbers and hence these groups are not isomorphic.

2.8 Lecture 12: Cosets

In this lecture, we will study an equivalence relation on a group induced by a subgroup. As a first
step, we consider the equivalence relation induced on the domain of a function ¢ : S — T.

Suppose that S and T are two sets and ¢ : S — T is a function from S to 7. We define a relation
on S by a ~biff. p(a) = p(b). That is, we identify two elements in S iff. they have the same image

under .
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Proposition 2.8.1 If ¢ : S — T is a function, the relation ~ defined on S by a ~ b if and only if

o(a) = ¢(b) is an equivalence relation.

Proof. Exercise. ]
The equivalence relation in the last proposition is called the equivalence relation induced by ¢.
As for all equivalence relations, we use the notation S to denote the set of equivalence classes and

we write a for the equivalence class containing a € S. Therefore
a={beS:¢(b)=¢()}
and
S={a:ac S}

Sometimes we write S = S/¢ if we want to emphasize the role of the function . Note that if

t € im @, then the set

ol (t)={a€S:p(a) =t}

is precisely an equivalence class; i.e. an element of S. The sets ¢ ~!(t),t € T are called the fibers of
the map ¢. Our remarks imply that the non-empty fibers are precisely the elements of S = S/¢.

Therefore we have a bijective map
p:8 —imep

which is defined by %(@) — ¢(a). Note that this map is well defined since @ = b iff. ¢(a) = (b).
In this sense, you can think of the equivalence classes in S, that is the elements of S, simply as the
elements in im ¢.

We now turn to the case where ¢ : G — G’ is a group homomorphism. In this case, the equivalence
relation on G induced by ¢ is referred to as congruence and is usually denoted by = rather than

~. Therefore if ¢ : G — G’ is a group homomorphism,
a=b<= p(a) = p(b).

Example 2.8.2 1. If ¢ : ZT — U, is defined by ¢(n) = €>™/4  then n = m iff. e2™n/* =

e?™™/4 iff (n —m)/4 € Z iff. n ~4 m. Therefore we see that this map has four equivalence

(
classes {0,1,2,3}.
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2. The map ¢ : C* — R* defined by ¢(z) = || is a group homomorphism. Here Z consists of all
w € C such that |w| = |z|. Thus the fibers are concentric circles centered at the origin. Since
im ¢ = RZ,, we see that the fibers are in bijective correspondence with the set of positive real
numbers. Geometrically, this is the (obvious) fact that each circle centered at the origin in C*

intersects the positive real axis exactly once.

Our next goal is to seek a relationship between the relation induced by a group homomorphism

¢ : G — G’ and the kernel of .

Proposition 2.8.3 If o : G — G’ is a group homomorphism with ker p = N and a,b € G, then the

following are equivalent:

(1) ¢(a) = ¢(b).

(2) a"beN.

(3) b= an for some n € N.

Proof.((1) = (2)) If p(a) = @(b), then
1=p(a) 'p(b) = p(a'b)

so that a='b =n € N by definition.
((2) = (3)) This is trivial: a™'b=n = b= an.
(3)= (1)) If b=an and n € N, then

¢(b) = p(an) = p(a)p(n) = ¢(a).

|
The set of elements {an : n € N} is denoted by aN an is referred to as the coset of N containing

a. For emphasis, we write
aN = {g € G: g =an for some n € N}.

The previous proposition implies that the coset alV is the set of elements that are congruent to a.

Therefore the set of cosets

{aN :a € G}
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partitions the group G. These cosets are the fibers of the map . In particular the circles centered
about the origin are the cosets of the absolute value homomorphism.
Now suppose that G is a group and H is any subgroup of G (not necessarily the kernel of a homo-

morphism). We can still define the notion of coset.
Definition 2.8.4 If H < G and a € G, then the left coset of H containing a is the subset
aH = {ah: h € H}.

Note that H itself is a coset: H = 1H. Note also that a € aH since a = ea and e € H since H is a
subgroup. In the proof of the following theorem, note how we constantly use the fact that H is a

subgroup of G.

Proposition 2.8.5 If H < G, then the relation = defined on G by a = b iff. a = bh for some h € H
is an equivalence relation on G. Moreover the equivalence class a containing a € G is precisely the

left coset aH of H containing a.

Proof. We first show that = is an equivalence relation.

Reflexive. Note a = al and 1 € H since H < G so that a = a.

Symmetric. If ¢ = b, then a = bh for some h € H. But H < G so that h~! € H and clearly
b= ah ! so that b = a.

Transitivity. Suppose that ¢ = b and b = ¢ so that a = bh; and b = chy for some hy,he € H. Then
hohy € H since H < G and easily a = bhy = (cha)h1 = c(hihs) so that a = c.

To show the final statement, note that b € @ iff. b = a iff. b = ah for some h € H iff. b € aH. [

Corollary 2.8.6 If H < (G, then the cosets of H partition G. Moreover, if a,b € G, then aH = bH
if and only if a='b € H.

Proof. The first statement is immediate since the cosets are the equivalence classes of an equivalence
relation. As for the second statement, aH = bH iff. b = a iff. b = ah for some h € H iff.
a~'b=heH. [

Example 2.8.7 1. If G = Z* and H = 4Z, then in additive notation, the coset containing n € Z

is

n+4Z ={n+ 4k : k € Z}.
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In particular, there are four cosets: 47,1 + 47,2 + 47 and 3 4 4Z. Compare this to the set of
equivalence classes in Z* induced by the homomorphism ¢ : ZT — U, defined earlier.

2. Let G = S3 = {1,z,2%,y,zy, %y} and let H = (xy) be the cyclic subgroup generated by the

order 2 element zy so that H = {1, zy}. The left cosets of H in G are the three sets

H = {l,zy} = zyH
zH = {z,2%y} = z?yH
?H = {ay} = yH

Note that the cosets do indeed partition the group. Note also that they each have exactly 2

elements and that 2 is the order of H. This is not an accident as the next proposition states.

Proposition 2.8.8 Let G be a group and let H be a subgroup of G. Then for any a € G, then

number of elements in the left coset aH is the order of H.

Proof. Our proof will use the common procedure for showing that two sets have the same number
of elements: we exhibit a bijection between them. To this end, for any a € G we define a map
f:H — aH by f(h) = ah. Clearly f is a surjection and f(hy) = f(hz) implies ah; = ahy which in
turn implies that Ay = hg by the cancellation law in G. Therefore f is injective and hence |H| = |aH|
as claimed. ]
If H is a subgroup of a group G, the number of left cosets of H in G is called the (left) index of
H in G and is denoted by [G : H].

Example 2.8.9 1. By our previous example, [Z : 4Z] = 4. More generally, [Z : nZ] = n for any

n>1.
2. If H={1,zy} < Ss, then [S3: H] = 3.

Since the cosets aH together form a partition of G and each coset aH has the same number of

elements as H, we have deduced the very important counting formula for groups:
|G| = |H|[G : H]

where the equality has the obvious meaning if |G| = co. Some very deep facts about the structure
of groups follow from this innocent looking formula. We present some of them here. We leave some

of the proofs to the reader.
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Corollary 2.8.10 (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G, then
the order of H divides the order of G.

Proof. This follows immediately from the counting formula: |H| is a factor of |G|. [
Corollary 2.8.11 If G is a finite group and a € G, then the order of a divides the order of G. ™
Corollary 2.8.12 Any group G with prime order p is cyclic.

Proof. Since |G| = p is prime, G is not the trivial group so that we can choose an element a € G
with a # 1. Therefore the order of the cyclic subgroup (a) generated by a is greater than 1. But
Lagrange’s Theorem implies that the order of a divides |G| = p so that we must have the order of a

equal to p and hence G is cyclic. ]

Corollary 2.8.13 If p is a prime integer, then there is only one group G of order p up to isomor-

phism.

Proof. If |G| = p is prime, then G is cyclic by Lagrange’s Theorem. Therefore G is isomorphic to

U, since all cyclic groups of order p are isomorphic to this group. [
Corollary 2.8.14 If ¢ : G — G’ is a homomorphism of finite groups, then
|G| = [ker¢| - |impl.
Proof. If we apply the counting formula to the subgroup ker ¢, we have
|G| = | ker ¢|[G : ker ¢].

Now the index [G : ker ¢] is the number of left cosets of ker ¢ in G, and we have seen that this is
precisely the number of fibers of the map ¢ which is in bijective correspondence with im ¢. In short
we have [G : ker ¢] = |im ¢| which proves the corollary. |
We conclude this lecture with a remark about the “leftness” in our construction of left cosets.

Suppose instead that we defined the right cosets of H in G by
Ha ={ha:h e H}.

We leave it to the reader to show that the relation = on G defined by a = b iff. a = hb for some

h € H is an equivalence relation on G whose equivalence classes are precisely the right cosets of H
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in G. We remark that in general, the left and right coset of H containing a need not be equal. That
is, in general, aH # Ha. The reader should verify this for the example H = {1,zy} < S3. However,

the following is true.

Proposition 2.8.15 If H is a subgroup of a group G, then the number of left cosets of H in G is
equal to the number of right cosets of H in G. Therefore we may refer to the index [G : H] as the

number of cosets of H in G without mentioning left or right.

Proof. We define a map f from the set of left cosets of H in G to the set of right cosets of H in G
by

f(aH) = Ha™*.

Since it is possible that a H = bH with a # b, we must show that this map is well defined. That is
we must show that if aH = bH, then Ha~' = Hb~!. But we have

aH=bH < a=bh<=a '=h 0" << Ha ' = Hp ..

We leave the verification that this map is a bijection to the reader. ]
An important fact in group theory is that the left and right cosets of a subgroup coincide precisely

when that subgroup is normal. We end this lecture with this result.

Proposition 2.8.16 A subgroup H of a group G is normal in G if and only if aH = Ha for all

a€Q@q.

Proof. (=) Suppose that H is normal in G and let ah € aH. Note that ah = (aha™')a and the
conjugate h' = aha~! € H since H is normal in G. Therefore ah = h'a € Ha so that aH C Ha.
Similarly we have Ha C aH so that aH = Ha as desired.

(«<=) Suppose that aH = Ha for all a € G and let h € H. Note that for all a € G, ah € aH = Ha
so that ah = h'a for some h' € H. Therefore aha~! = h’ € H so that H is a normal subgroup by

definition. [ ]

2.9 Lecture 13: Products of groups

We begin this lecture with a slight generalization of the definition of direct product given in the first

lecture.
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Definition 2.9.1 (Cartesian product) The Cartesian product of the sets S1,S2, ..., Sk is the

set of all ordered k-tuples (ai,...,ax), where a; € S;. The Cartesian product is denoted by
51X52X---XSk

or by

Of course we are interested in the case when each of the sets is a group. We want to make the
Cartesian product into a group in a way that relates group structure to the group structure in the

individual factors.

Theorem 2.9.2 Let Gy,...,Gy be a collection of groups. For (ai,...,ax),(b1,...,bx) € Hle G,
define

((1,1, ceey ak)(bl, ey bk) = (albl, ey akbk).
Then [~ G; is a group, the direct product of the groups G;, under this product.
=1

Sketch of Proof. Note that since each G; is a group a;b; € G; whenever a;,b; € G; so that the
definition if the binary operation makes sense. The verification of the associative law follows from the
associative law in each factor. The element (e,...,€) is the identity and the inverse of (ay,...,ax)
is (a7'y. .. a1 Y). |
From now on, we will focus on the case when & = 2, but the reader is advised that everything we
say is valid for any k. In mathematics, it is usually easier to multiply than it is to factor. Products
of groups are no exception to this rule so that we begin by studying the relationship between the
two factors G and G’ and the product G x G’. The situation is understood best in terms of four
homomorphisms called the canonical inclusions and projections. Namely we have the following

proposition.
Proposition 2.9.8 If G and G’ are groups, then the maps in the diagram
GxG
G'/ p\~ el
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defined by

i(a) = (a,1), ¥(a') = (1,d)
p(a,a') =a, p'(a,d)=d
are group homomorphisms. Moreover, i and i’ are injective so that we may identify G and G' with

their tmages G X 1 and 1 x G' respectively. Finally, the maps p and p' are surjective, kerp =1 x G’

and kerp’ = G x 1.

Sketch of Proof. It is easy to show that the maps defined are group homomorphisms since
we multiply in the product group by multiplying in each coordinate. Moreover, it is clear that
imé = G x 1 and i(a) = (1,1) iff. @ = 1 so that ¢ is injective. The equation p(a,1) = a (a € G)
shows that p is surjective and p(a,a’) = 1iff. a =1 and &’ € G’ is arbitrary so that kerp =1 x G’
as claimed. The statements about 7’ and p’ are shown in the same way. ]
We remark that the proposition shows that G and G’ are isomorphic to two normal subgroups of
the product: G x 1 and 1 x G'. They are normal since they are kernels of homomorphisms. We
want to study groups by breaking them into product of smaller groups. Since our investigation of
groups always involves homomorphisms, we need to study how homomorphisms into product groups
behave with respect to the factors. The following theorem states that all such homomorphisms can

be built by looking at homomorphisms into the factors one at at time.

Theorem 2.9.4 (Mapping property of products) If H is any group, then the homomorphisms
®: H— G xG are in bijective correspondence with pairs (¢, ') of homomorphisms ¢ : H — G

and ¢' : H — G'. Moreover we have ker ® = ker ¢ Nker ¢'.

Proof. First, if (¢,¢’) is a pair of homomorphisms from H into G and G’ respectively, the reader
can check that the map ® : H — G x G’ defined by ®(h) = (¢(h), ¢'(h)) is a group homomorphism.
Conversely, if ® : H —+ G x G’ is a given group map, the compositions ¢ = p® and ¢’ = p'® are
group homomorphisms from H into G and G’ respectively and the pair (p, ¢’) reassembles to give
the map ®. Finally, we note that ®(h) = 1 iff. ¢(h) =1 and ¢'(h) = 1 so that ker & = ker pNker ¢'.
]

As an application of the mapping property for products, we prove the following important fact about
cyclic groups. Since there is only one cyclic group of order n up to isomorphism, we will let C,
denote “the” cyclic group of order n in what follows. Recall that two integers n and m are relatively

prime if they have no common divisor greater than 1.
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Theorem 2.9.5 The cyclic group Cpry, is isomorphic to the direct product C, X Cy, if and only if

n and m are relatively prime.

Proof. Let us denote the generators of Cy, Cp, and C), by z,y and z respectively.
(=) If n and m are relatively prime, we define a map ® : Cp, — Cy, x Cy, by ®(z%) = (¢, 2).
Easily @ is a group homomorphism and hence ker ® = ker ¢ N ker ¢’ where ¢ = p® and ¢’ = p'®.
Now z¢ € keryp iff. y* = 1 iff. n|i iff. i = nk for some integer k. Similarly z° € ker¢’ iff.
1 =mk', k' € Z. Tt follows that ¢ is a multiple of both n and m and hence nm since n is relatively
prime to m. Therefore z¢ = 1 so that ker pNker ¢’ = ker & = {1} and hence @ is injective. Moreover,
this implies that the order of the image of ® is nm and this is also the order of the direct product
C, x Cp, so that @ is surjective and hence an isomorphism.
(«<=) Now suppose that n is not relatively prime to m so that the least common multiple [n,m] of
n and m is less than nm. We claim that every element of the direct product C,, x C,, has order
less than or equal to [n,m] so that, in particular, C),, x Cy, % Cprm. To see this, we recall from
Lecture 8 that for a € Cy,, a¥ = 1 iff. n|k. We note that by definition, n|[n, m], m|[n, m] and for any
(a,b) € Cp, X Cpy,

(a,8)0"m) = (almsm, inem) — (1,1)
so that the order of (a,b) is at most [n,m] < nm. n
It is often much harder to determine if a given group @ is isomorphic to a direct product of two
groups. We end this lecture with a necessary and sufficient condition for a group to be isomorphic

to a direct product of two subgroups. For notation, if A and B are two subsets of a group G, we

define the product of A and B by
AB={g€G:g=abforsomeac Aand b€ B.}

Proposition 2.9.6 Suppose that H and K are subgroups of a group G.

1. If HN K = {1}, then the product map w : H Xx K — G defined by w(h,k) = hk is injective.

Moreover, imm = HK.

2. If either H or K is a normal subgroup of G, then HK = KH and HK < G is a subgroup of
G.

3. If H and K are normal, HNK = {1} and HK = G, then G is isomorphic to the direct product
Hx K.
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Proof. (1) Suppose that (h1, k1), (he,k2) € H x K and hi1k; = hoke. Then it follows that h;lhl =
k2k1_1 € HN K = {1}. Therefore h; = hy and k; = ky so that = is injective.

(2) Suppose that H is a normal subgroup of G and let h € H and k € K. Since H is normal,
khk=! € H and (khk~')k = kh so that KH C HK. Similarly one shows that HK C KH and
hence HK = KH. Now suppose that hk,h'k’ € HK. Then we have (hk)(h'k") = h(kh')k' with
kh' € KH = HK. If we say kh'’ = h"k", then we have

(hk)(W'K') = h(kh)K' = h(h"E")K = (hh")(K"K') € HK

so that HK is closed under the group product. Of course 1 = 1-1 € HK. Finally, we have
(hk)"! =k h ! € KH = HK so that HK is closed under inverses and hence is a subgroup. The
proof is similar if K is a normal subgroup.

(3) We claim the product map 7 is a group homomorphism in this case. Consider the product
(hkh™ k™' = h(kh™'k™1).

Since K is a normal subgroup, the left side is in K and since H is a normal subgroup, the right side
is in H. Therefore hkh='k=* € HN K = {1} so that hk = kh for all h € H and K € K. This

immediately implies that the product map = : H X K — G is a group homomorphism:
7((h, k), (W, k")) = w(hh',kk') = hh'kk' = hkh'k' = w(h, k) (K, k).

By part (1), 7 is injective and by assumption, im7 = HK = @ so that 7 is an isomorphism. ]

2.10 Lecture 14: Quotient groups

Our investigation of the kernel of a group homomorphism in Lecture 10 lead us to the notion of
normal subgroups. In Lecture 11, we saw that these subgroups are precisely the subgroups whose
left and right cosets coincide: N is normal iff. alN = Na for all ¢ € G. In the present lecture, we
want to show that this last property is equivalent to the set of cosets G/N having a group structure
for which the canonical projection G — G/N is a group homomorphism. Constructions analogous
to those contained in this lecture are found throughout all branches of mathematics and therefore
this material should be throughly mastered. Recall if A and B are subsets of a group G, the product
of A and B is the set

AB ={ab:a € A,be B}.
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In particular if H < G is a subgroup, we can form the product of two cosets: (aH)(bH). The

following lemma is fundamental in what follows.

Lemma 2.10.1 If N is a normal subgroup of a group G, then the operation
(aN)(bN) = abN

is well defined on the set of left cosets of N in G.

Proof. We must show that the operation is well defined since its definition involves choices of
representatives of the cosets of IV in G. Therefore we must show that if an; and bny represent a N
and bN, then anibno represents abN. Since N is normal, bN = Nb so that n1b = bnz for some
ng € N and hence anibno = abnsnsy so that abN = an,bnoN as desired. [}
If H < G is a subgroup of a group G, we will denote the set of (left) cosets of H in G by G/H.
The last lemma says that if N is a normal subgroup, then the binary operation on G/N defined by
aNbN = abN is well defined. The following theorem confirms that this binary operation gives the

set of cosets the structure of a group called the quotient group of G by N.

Theorem 2.10.2 If N is a a normal subgroup of a group G, then the binary operation on G/N
defined by aNbN = abN makes G/N a group. Moreover the canonical map 7 : G — G/N defined

by m(a) = aN is a surjective group homomorphism with kerm = N.

Proof. The lemma implies the binary operation is well defined. The associative property follows

directly from that in G:
(aNON)cN = (abN)cN = (ab)eN = a(be)N = aNbeN = aN(bNcN).

The element eN = N is clearly the identity and a !N is the inverse of a/N. The map 7 is clearly

surjective and
m(ab) = abN = aNbN = 7(a)w(b)

so that 7 is a group homomorphism. Finally, we note that aN = N iff. a € N so that kerm = N. m

The theorem has an important corollary.

Corollary 2.10.3 A subgroup N is normal if and only if N is the kernel of a homomorphism.
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Proof. We have seen that kernels are normal subgroups and the theorem implies that if IV is a
normal subgroup of G, then N is the kernel of the canonical homomorphism G — G/N. ]
We have come to the central result of our lecture. It is a fundamental result in identifying quotient

groups.

Theorem 2.10.4 (First isomorphism theorem) If ¢ : G — G’ is a group homomorphism with
N = ker @, then the map ¢ : G/N — im ¢ defined by $(aN) = ¢(a) is a well defined isomorphism

that satisfies ¢ = pm where m: G — G/N is the canonical homomorphism.

Proof. Here again we must show that if an also represents aN, then ¢(a) = p(an) so that @ is well
defined. But if n € N, then ¢(an) = ¢(a)p(n) = ¢(a). To show that ¥ is a homomorphism, we

compute

?(aNbN) = B(abN) = p(ab) = p(a)p(b) = B(aN)Pp(bN).

Clearly @ is onto im ¢ and finally, §(aN) = 1 iff. p(a) =1iff. a € kero = N iff. aN = N so that @

is injective and hence an isomorphism. To complete the proof, we note that for all a € G,

¢(a) = p(aN) = pr(a).

]
We end this lecture with some examples that show how the first isomorphism theorem is used to

identify a quotient group.

Example 2.10.5 1. The absolute value homomorphism C* — R* maps the non-zero complex
numbers onto the positive real numbers and its kernel is the subgroup S*. Therefore C* /S! ~

X
R%,.

2. The map det : GL,(R) — R* is a surjective group homomorphism with kernel SL,,(R) so that
GL,(R)/SL,(R) ~ RX.

3. The map Z — U,, defined by k — e2™**/™ is a surjective group homomorphism with kernel nZ

so that Z/nZ ~ U, is a cyclic group of order n. We often denote this quotient by Z, .

4. The map sign : S,, — Us is a surjective homomorphism with kernel A,, - the alternating group.

Therefore S, /A, ~ Us is cyclic.

We will discuss example (3) in detail in the next lecture.
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2.11 Lecture 15: An example of quotient groups—modular
arithmetic

In this lecture, we want to carefully study the quotient group Z/nZ as it will be a prevalent example
for the rest of the course.
Recall that since Z* is an abelian group, every subgroup nZ is normal so that we can form the

quotient group Z, = Z/nZ. If we write
a=a+nZ

for the coset containing a € Z, then we see that @ = b if and only if @ — b € nZ if and only if
n|(a—b). Historically, two integers are called congruent modulo n if n divides their difference, or
equivalently, if they have the same remainder when divided by n. We can use the division algorithm

to show that the following n cosets together cover Z:
nZ,1+nZ,...,(n—1)+nZ.

Therefore the quotient group Z, has order n. We have seen in the last lecture that Z, ~ U, so
that Z, is a cyclic group for all n. In fact, it is easy to see that 1 generates Z,. Our current goal
is to find a complete list of generators for Z,. Our investigations will lead us to a discussion of the
famous Euler ¢-function. The reader may wish to review the material covered in Lecture 8, as it
will play a heavy role here.

Recall that the greatest common divisor of two integers n and m is the positive generator of the
cyclic subgroup nZ+mZ = dZ of Z". We denote the greatest common divisor by the symbol (n,m),
and we say that n and m are relatively prime if (n,m) = 1. We will need the following fact from

number theory.

Lemma 2.11.1 If (n,m) =1 and n|mk, then n|k.

Proof. Since (n,m) = 1, there exist integers 7, s € Z such that
nr +ms = 1.

Multiplying this equation by k& on both sides yields

nkr +msk = k.
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Now of course n|nkr and n|msk since n|mk so that n|k. |

The next theorem is the result we need to accomplish our goal.

Theorem 2.11.2 Suppose that G is a cyclic group of order n generated by a. If b€ G and b= a®,

then b generates a cyclic subgroup (b) of order n/(n,s).

Proof. Of course b generates a cyclic subgroup of G so that we need only verify that the order of
bis n/(n,s). Let m be the order of b and recall that m is the smallest positive integer such that
b™ = 1. But b™ = 1 iff. (a°)™ = a™* = 1 so that n|ms. We want to find the smallest positive

integer m such that n|ms. Let d = (n, s) and note that we can find integers u and v such that
d=un+vs <= 1=u(n/d)+v(s/d).

Note that both n/d and s/d are integers since d = (n, s). It follows that n/d and s/d are relatively

prime. We want to find the smallest positive integer m such that

ms m(s/d) . .
— = i1s an integer.
n (n/d)
From the lemma, we conclude that n/d must divide m so that the smallest such m is n/d. u

Example 2.11.3 1. To find the order of 3 in Z;2, we note that 3 = 3-1 and (12, 3) = 3. Therefore
the order of 3 is 12/3 = 4.

Corollary 2.11.4 If G is a cyclic group of order n generated by a, then a® € G generates G if and

only if n is relatively prime to s. [
If n € Z is a positive integer, the Euler ¢-function is defined by
©(n) = the number of integers less than n that are relatively prime to n.

For example, ¢(2) =1, ¢(3) = 2, ¢(4) = 2 and ¢(10) = 4. The reader can show that p(p) =p—1

for all primes p. With this notation, we have the following corollary to the theorem above.
Corollary 2.11.5 If G is a cyclic group of order n, the number of generators of G is p(n). [ ]
We end this lecture by finding all subgroups of the cyclic group Zs.

Example 2.11.6 Recall that all subgroups of Z;g are cyclic so that we can simply list all the cyclic

subgroups and be done. In what follows, we omit the bar notation so that 1 means 1 and so on.
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By the previous corollary, the elements 1,5,7,11,13 and 17 are all generators of Z;5. Now starting
with 2,

(2) ={0,2,4,6,8,10,12,14, 16}

is of order 9 and has generators of the form h2 where h is relatively prime to 9. Namely h = 1,2,4,5,7
and 8 so that h2 = 2,4,8,10,14 and 16. The element 6 generates (6) = {0,6,12} and 12 also

generates this group. We still have to check 3,9 and 15. We have
(3) =10,3,6,9,12,15},

and 15 also generates this group since 15 = 5-3 and (6,5) = 1. Finally, (9) = {0,9}. We end the

example by drawing the lattice diagram for the subgroups of Zg.

|
N
&

(1)
(2) /
\ (6)

NS

(3)
\ (9)
(0) /
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Chapter 3

Vector Spaces

3.1 Lecture 16: Real and complex vector spaces

We assume the reader has some familiarity with real and complex vector spaces from an elementary
linear algebra course. Our purpose here is to develop the same theory one sees in elementary linear
algebra from the group theory point of view. To begin, let us denote the direct product of the

additive group of real numbers with itself n times by R™ so that

R*" =R" x--- xRt
—_——

n

Historically, elements of this abelian group are called vectors and the group operation:
(al,...,an)—}— (bl,...,bn) = (a1+b1,...,an+bn)

is called vector addition. Notice that the set R™ is closed under another operation called scalar

multiplication. Namely, if a € R is a real number, then we can define the product
a(al,-..,an) = (@aq,...,aan)

for all @ = (a1,-..,a,) € R™. The reader can easily verify that this operation satisfies the following

familiar properties for all a,b € R” and all , 5 € R.
1. (aB)a = a(Ba).

2. (a+ B)a = aa+ Ba.
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3. a(a+b) = aa+ ab.
4. la = a.

All of this motivates the following definition.

Definition 3.1.1 (Real vector space) A real vector space is an abelian group V = (V,+)
together with a function R x V. — V written (a,v) — av called scalar multiplication such that

for all o, 8 € R and all u,v € V, we have
1. (af)v = a(Bv).
2. (a+pB)v=av+ Pu.
3. a(u+v) = au+ av.
4. lv=n.

The elements of the group V are called vectors and the elements of the real numbers R are called

scalars. In particular the additive identity 0 € V' of the group V is called the zero vector.

Example 3.1.2 1. The direct product R” is a real vector space with the component wise scalar

multiplication defined above.

2. Let V = Cla,b] be the abelian group of continuous functions on the interval [a,b]. We recall

that if f, g € Cla,b], then by definition
(f +9)(z) = f(z) + g(x)
and if o € R is a scalar we define
(af)(z) = af(z).
It is an easy exercise to show that V' = CJa, b] is then a real vector space.

8. The set P, of polynomials of degree less than or equal to n is a real vector space under the

usual addition and scalar multiplication of polynomials.

Since a vector space V is also an abelian group, we can look at the subgroups of the group V.
However, we should pay special attention to those subgroups that are compatible with the operation

of scalar multiplication. We make the following definition.
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Definition 3.1.3 (Subspace) A subset W of a real vector space V is a subspace if
1. W is a subgroup of V.

2.aweW forallaeR and alw e W.
The second condition is often referred to by saying W is stable under scalar multiplication.

Example 3.1.4 1. If A is an m X n matrix, the set of solutions to the homogeneous system of

linear equations AX = 0 is a subspace of R”.

2. The set W = {f € CI[0,1] : f(1/2) = 0} is a subspace of the vector space of continuous

functions on the unit interval.
8. P,_; is a subspace of P,.

If we go back to the very beginning of the lecture and replace the scalars R with complex numbers
C, then we have defined the notion of a complex vector space. We conclude this lecture by listing

some elementary properties of real and complex vector spaces. The proofs are left as exercises.

Proposition 3.1.5 IfV is a real or complex vector space, then
1. Orv = Oy for allv € V. (Here you may replace R with C.)
2. a0y = Oy for all o € R. (Here again you may replace R with C.)

3. (-)v=—v forallveV.

3.2 Lecture 17: Abstract fields

You do not have to study real and complex vector spaces for very long before you realize that there
is no difference between the two objects. That is, it is not important whether or not the scalars
are real numbers or complex numbers (or even numbers at alll); all that matters is that the scalars
have the same arithmetic properties that the real and complex numbers have. These properties are

exactly what motivate the definition of an abstract field which we now give.

Definition 3.2.1 (Field) A set F with two binary operations + and - is called o field if
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1. (F,+) is an abelian group. The additive identity is written 0.

2. (F*,-) is an abelian group (F* = F \ {0} is the set of non-zero elements of F). The multi-

plicative identity is written 1.

8. For all a,b and c in F, the following distributive law holds:

a(b+c) =ab+ ac.

Note that R and C are fields. The set of rational numbers Q is also a field. The integers Z do not
form a field since the non-zero integers are not a group under multiplication. The fields C,R and Q
are familiar to the reader. In fact, R and QQ are examples of subfields of C. To be more precise, a
subfield of C is a subset F' C C that is a subgroup of (C,+) and F'* is a subgroup of C*. It may
come as a surprise that there are fields that are not subfields of C. We will begin looking for them

in the group Z,, where p € Z is a prime number. We will need the following lemma.

Lemma 3.2.2 Let n € Z be a fized positive integer and let @ denote the coset of nZ in 7Z that

contains the integer a. If a,b € Z, then the operation

ab=ab

is well defined on Z,,. Moreover, if ¢ € Z, then the distributive law

holds.
Proof. Suppose that @ = o/ and b = ¥ so that o’ = a + kn and b’ = b+ jn. Then we compute
't = (a+ kn)(b+ jn) = ab+ (kb + ja + jkn)n

so that a/b’ = ab and the operation is well defined. We have seen that addition of cosets is well
defined in Z, and consequently all operations in the distributive law are independent of the choice
of representatives. ]
The previous lemma is almost enough to show that Z, is a field. That is, we know that (Z,,+) is an
abelian group and the lemma implies that Z, has a multiplication that distributes over the addition
in this group. The only thing that is possibly missing is the existence of multiplicative inverses. The

following example gives a hint about what is going on here.
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Example 3.2.3 Consider the group (Zg,+). Note that 2,3 # 0 but 23 = 0 so that 2 cannot be

invertible. As we shall see, this behavior cannot happen if n is a prime number.

Theorem 3.2.4 Ifp € Z is a prime number and @ € Z,, satisfies @ # 0 (i.e. p does not divide a),
then there ezists an element b € Z,, such that ab =1 and hence Z, is a field.

Proof. Since the order of Z, is p, the set
{@:kez}
must be finite so that a* = @™ for some k < m. Now,

a* =a™ < pla™ — a* < plaF(a™F - 1).

By hypothesis, p does not divide a so that p does not divide a*. It then follows that p divides
(@™ * — 1) so that @™ % =T and m — k > 0. If we define b = a™ %=1, then @b = 1. It follows
that the non-zero elements of Z, are all invertible and of course 1 is a multiplicative identity. The
associative property follows directly from that in Z so that Z;f is a group under multiplication of
cosets. We have seen that the distributive law holds so that Z, is a field. ]
Fields have a rich enough algebraic structure to do most mathematical operations. For example, one
can look at matrices with entries from a field F' since the definitions of matrix addition and multi-
plication are still valid if the entries come from a field - just replace the addition and multiplication

of real or complex numbers with the addition and multiplication in the field F.
Example 3.2.5 Let F be an arbitrary field and define
GL,(F) = {n x n matrices A over F such that det A # 0}.

Then GL, (F) is a group called the general linear group over F. In particular we can look at the
very interesting groups GL,(Z,). Note that GL,(Z,) is a new example a family of finite groups. It

is an interesting exercise to compute the order of GL,,(Z,).

p
—

Note that in the field Z,, we have 1+ --- + 1 = 0 (this never happens in a subfield of C!). Because

of this, we say Z, has characteristic p. To be more precise, we make the following definition.

Definition 3.2.6 (Characteristic) If F is a field, the smallest positive integer n satisfyingn-1p =
Op is called the characteristic of F'. If no such positive integer exists, we say F' has characteristic

Zero.
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For example, the field C and all of its subfields have characteristic zero. The field Z, has characteristic
p. We end this lecture with the definitions of a vector space over an arbitrary field and a subspace.
The reader should compare these definitions with the ones given for real and complex vector spaces

in the previous lecture.

Definition 3.2.7 (Vector space) Let F' be a arbitrary field. An abelian group V = (V,+) is
called an F-vector space if there exists a function F x V — V written (a,v) — av called scalar

multiplication such that for all o, € F and all u,v € V, we have
1. (af)v = a(Bv).
2. (a+B)v = av+ pv.
3. a(u+v) =au+ av.
4. 1lpv = 0.

The elements of the group V are called vectors and the elements of the field F are called scalars.

In particular the additive identity 0 € V' of the group V is called the zero vector.

Example 3.2.8 1. The direct product group F'™ is a vector space over F' with the obvious scalar

multiplication.
2. The set of m X n matrices with entries in F is a vector space over F.

8. The set of functions f : R — F is an F-vector space under pointwise addition and scalar

multiplication.

Definition 3.2.9 (Subspace) A subset W of a vector space V over a field F' is a subspace if
1. W is a subgroup of V.

2. cw e W foralla € F and allw € W.

Therefore subspaces are just the subgroups of (V,+) that are closed under scalar multiplication.

Our previous examples of subspaces all carry over to the case of an arbitrary field.

Example 3.2.10 1. If A is an m X n matrix with entries in F, the set of solutions to the

homogeneous system of linear equations AX = 0 is a subspace of F™.
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2. The set W = {f : [0,1] — F : f(1/2) = 0} is a subspace of the vector space of F-valued

functions on the unit interval.

Our work in group theory already gives us an idea of what we should mean by an isomorphism of
vector spaces over F. After all, each such vector space is an abelian group so that if we are to
call two vector spaces V' and V' isomorphic, they should at the very least be isomorphic as abelian
groups. That is, there should be a bijective group homomorphism ¢ : V' — V’. However, the map
¢ should also know about the operation of scalar multiplication since V and V' are vector spaces.

All of this motivates the following definition.

Definition 3.2.11 (Isomorphism) Let V' and V' be two vector spaces over the same field F. A

bijective group homomorphism ¢ : V — V' is called an isomorphism if

p(av) = ap(v)
forallao€ F and allv e V.

Example 3.2.12 The abelian group CT is a real vector space since R C C and hence we can define
scalar multiplication az (a € R,z € C) as ordinary multiplication of complex numbers. We leave it
as an exercise for the reader to show that the map ¢ : R? — C defined by ¢p(z,y) = z + iy is an

isomorphism of real vector spaces.

3.3 Lecture 18: Bases and dimension

It turns out that every element of a (usually infinite) vector space can be described in terms of a
finite subset of vectors in V. The goal of the current lecture is to introduce the notions of span, linear
independence and basis which, together, give this description. Before we begin, we remark that some
of our calculations and notations will depend on the ordering of a set. Recall from elementary set
theory that sets are unordered collections of elements. Therefore the two sets {a,b,c} and {b,c,a}
are exactly the same. In linear algebra, we will often work with sets of vectors that are in some
specific order, and we want our notation to reflect that this order matters. Therefore we will replace
the curly set brackets { and } with round parentheses ( and ) when we want to fix the order of the
sets. In this notation, the ordered sets (a,b,c) and (b, c,a) are not the same. We begin with the

definition of linear combination.
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Definition 3.3.1 Let V' be a vector space over a field F' and let (vi,...,v,) be an ordered set of
vectors in V. Then a linear combination of the v; is a vector v € V of the form

V=1V +agvy + -+ a,v,

where each a; € F is a scalar. The scalars «; are called the coefficients of the linear combination.
If S = (v1,v2,...,v,) is an ordered set of vectors in V, the set of all linear combinations of the

vectors in S is called the span of S and is denoted Span(S). Therefore
Span(S) = {v:v = aiv; + agvs + + -+ + apvn,,a; € F}.
If S CV and Span(S) =V, then we say S spans V.

Example 3.3.2 (Important!) Suppose that A is an m X n matrix with entries in F. The the
matrix equation AX = B exhibits the vector B € F™ as a linear combination of the columns of the

matrix A where the coefficients are the entries of the vector X € F™:

aii a2 A1n T1 a1 ai2 A1n

a21 a2 -+ Q2n T2 a21 a22 an1
=z . + T2 . etz

Am1 am2 e Amn Tn am1 J Am?2 Amn

It is an easy exercise to show that Span(S) is a subspace of V' (do it!). The following states that

this is the smallest subspace of V' containing the set S.
Proposition 3.3.3 If W is a subspace of a vector space V and S C W, then Span(S) C W.

Proof. Suppose that v € Span(S) so that v = Y. | a;v; where v; € S and ; € F. Now, W is a
subspace of V' and hence W is closed under scalar multiplication and vector addition. But v; € S
so that v; € W and hence v € W. ]
If S C V spans V, then in some sense this means that there are “enough” vectors in S to describe
all of V. We now turn our attention to the related notion of “no overlap”. Specifically, we make the

following definition.
Definition 3.3.4 A subset S = {v1,v2,...,v,} is called linearly independent if the equation
a1v1 + agvg + -+ v, =0

implies that o; = 0 for all i =1,2,...,n. If S is not linearly independent, we say it is dependent.
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In other words, a (finite) set S is linearly independent if the only linear combination of the v; € S
that gives the zero vector is the trivial linear combination. The next proposition explains the

term “no overlap” used above.

Proposition 3.3.5 IfS = {v1,v2,...,vn} is a linearly independent subset of a vector space V, then

for every v € Span(S), there exist unique scalars a; € F such that
V= Q11 + QU2 + -+ QpUn.

Proof. The existence of the o; follows immediately from the definition of the span of S. Therefore

suppose that
v = B1v1 + Bava + - + Brvn
as well so that subtracting gives
(o1 — B1)v1 + (2 — B2)va + -+ + (an — Bn)vn = 0.

Therefore a; — 8; = 0 for all i since S is linearly independent and hence «; = §; for all 4. ]
It follows from this proposition and the remarks above that if S is a linearly independent spanning
subset of a vector space V', then every vector v € V' can be expressed uniquely as a linear combination
of the vectors in S. The spanning part says that S is “big enough” to describe all vectors in V' and
the linearly independent part says that there is “no overlap” because each such representation is

unique. This idea is important enough to have a name.

Definition 3.3.6 (Basis) If V is a vector space over a field F', a subset S C V is called a basis

for V if S is a linearly independent spanning set.

Example 3.3.7 Let V = F™ be the vector space of column vectors over F' and let e; denote the
column vector with a 1 in the *® position and zeros elsewhere. Then the set (e1,ez,...,e,) is a

basis for F'™ called the standard basis.

Our last goal of this lecture is to show that any two bases of a vector space V have the same
cardinality. We will focus on the cases in which V has a finite basis so that we will show that
any two bases of V have the same number of elements. It turns out that this number is the only
invariant among vector spaces in the sense that any two vector spaces with bases of the same size are
necessarily isomorphic. We will need three technical lemmas. The proofs are all very straightforward

applications of the relevant definitions.
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Lemma 3.3.8 Let L = (v1,-..,v,) be a linearly independent ordered set of vectors in a vector space
V. IfveV and L' is the ordered set L' = (L,v) obtained from L by inserting v at the end, then L'

is linearly independent if and only if v € Span(L).
Sketch of proof. (=) If v € Span(L), then
V= Q1V1 + QU2 + + - + QpUp
so that
a1v1 + agva+ -+ apvp + (—1)v =0

and hence L’ is dependent.

(<) If L' is dependent, then we must have
v +agva + -+ o+ v =0

with not all the coefficients zero. But 8 # 0, otherwise L would be dependent. Therefore you can

solve this equation for v showing that v € Span(.S). [ ]

Lemma 3.3.9 If S is an ordered set of vectors and v € V is any vector, let S’ = (S,v). Then
Span(S) = Span(S’) if and only if v € Span(S). |

Definition 3.3.10 A vector space V is called finite dimensional if there is a finite subset S C V
such that Span(S) =V.

Lemma 3.3.11 Any finite set S that spans V' contains a basis. In particular, every finite dimen-

stonal vector space V' has a basis.

Proof. We induct on the number of elements in S. Suppose that S = (v1,...,v,) is dependent so

that there is a nontrivial linear combination
av; + -+ apv,. = 0.

Without loss of generality, we may assume that «, # 0 so that we can solve the last equation for
v, showing that v, € Span(vy,...,v,_1). The last lemma then implies that Span(vy,...,v._1) =V
and by induction (v1,...,v,._1) contains a basis. ]
We remark here that the above “induction” argument is slightly incomplete. Namely, we never
verified the case r = 1, and we see that the proof breaks down in this case! To fix this nasty

situation, we make the following conventions:
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1. The empty set is a linearly independent set.
2. The span of the empty set is the zero subspace.

Lemma 3.3.12 Every linearly independent subset L of a finite dimensional vector space V' can be

extended to a basis for V.

Proof. If Span(L) = V, we’re done. Otherwise there exists a vector v € V with v ¢ Span(L)
and the set L' = (L, v) is linearly independent by a lemma above. Since V is finite dimensional,

continuing this process will eventually produce a spanning set and hence a basis. [

Lemma 3.3.13 Suppose that S and L are finite subsets of a vector space V. If S spans V and L

is linearly independent, then |S| > |L| where |S| denotes the number of elements in the set S.

Proof. Suppose that S = (v1,...,v,) and L = (wi,...,w,). Since Span(S) = V, for each

1< j <mn, we can find scalars o;; € F such that
Q1V1 + 0+ OmjUm = Wy

If we let u = Brwy + - - - + Bpws,, then substituting gives

u = Z Bja,-jvi.
¥

The coefficient of v; in this sum is Zj Bjoyj; and if this coefficient is zero for all 4, then u = 0.
Therefore to find a relation among the wj, it suffices to solve the homogeneous system j QT = 0
of m equations in n unknowns. If m < n, such a system always has a solution and hence L is
dependent if m < n. The result now follows by contraposition. ]

We can now state and prove the final goal of this lecture.

Theorem 3.3.14 Suppose that V is a finite dimensional vector space over a filed F'. Then any two

bases for V' have the same number of elements.

Proof. If B and B’ are two basis for V, then the previous lemma implies that |B| > |B’| since B
spans V and B’ is linearly independent. Interchanging the roles of B and B’ shows that |B'| > |B|
so that |B| = |B'|. [

Definition 3.3.15 (Dimension) If V is a finite dimensional vector space, the dimension of V

is the number of vectors in a basis for V.

The previous theorem implies that this number is independent of the particular basis used.
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3.4 Lecture 19: Computations with bases

The main purpose for introducing bases in a vector space is to provide a method of performing
computations. The primary goals of the current lecture are to illustrate these computations as well
as investigate the changes in the computations when we change basis. An important consequence
of our work will be a result that states exactly how many bases a given vector space has. We will
begin with a discussion of coordinate vectors in the vector space F™.

Suppose that we are given an ordered basis B = (v1,v2,...,v,) for F™ so that every vector v € F™

can be expressed as a linear combination of the vectors v; is a unique way:
V=0a1V1 + "+ apv,.

The scalars o are called the coordinates of the vector v with respect to the basis B and

T is called the coordinate vector of v with respect to B. If we let

the vector X = (ai,...,an)
[B] denote the n x n matrix whose j*! column is the vector v;, then we can write the vector v as a
matrix product [B]X. In this notation, if we are given a vector Y = (y1,...,yn) € F™ and we want

to find the coordinates of Y with respect to B, we must solve the matrix equation
B X =Y
for X. The following proposition states that this equation is easy to solve.

Proposition 3.4.1 If A is an n X n matriz over F', then A is invertible if and only if the columns

of A form a basis for F™.

Proof. If we let v; denote the §*® column of A, then for any vector X = (z1,...,z,) € F", the
matrix product AX = z,v1 + -+ + Z, vy, is a linear combination of the columns v;. Therefore the
columns of A are linearly independent if and only if the matrix equation AX = 0 has only the trivial
solution X = 0 which is true if and only if A is invertible. Finally, since dim F™ = n, a linearly
independent set with n vectors is necessarily a basis. ]
It follows immediately from this proposition that the coordinate vector of a vector Y € F™ with
respect to the basis B is X = [B]~1Y. All of these computations are possible because the vectors v;
in B are given explicitly as elements of F*. We now turn our attention to the case of an arbitrary
vector space V over F. In this case, it is not possible to represent a basis B = (v1,...,v,) as a

matrix over F'. However, we can formally manipulate this hypervector as if it were a matrix. To
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this end, if X = (z1,...,7,)T is a matrix of scalars, we define the product
I
(v1y---yvn) =T1V1 + -+ TpUn.
Tn

We can abbreviate this notation and write the linear combination simply as BX. Moreover, if A is

an n X m matrix over F', we define the product

(v1,.-yvn)A = (W1,..., W)
where
Wj = a1V1 + -+ + GnjUn.
In this notation, each wj is a linear combination of (v1,...,v,) and the scalars in the linear com-

bination form the j*" column of the matrix A. We call this operation multiplication by the
hypervector B. Recall that our goal is to be able to find the coordinate vector of a given vector

v € V for a given basis B. The following theorem will allow us to achieve this goal.

Theorem 3.4.2 If V is a finite dimensional vector space over a field F and B = (v1,...,v,) is a

basis for V, then the map i : F™ — V defined by
Y: X — BX
is a vector space isomorphism.

Sketch of Proof. We will leave the verification that ¢ is a group homomorphism to the reader.
Since B is a basis for V, B spans V and hence the map v is surjective. Moreover, ¥(X) = 0 iff.
BX =0 iff. X =0 since B is linearly independent so that v is injective. ]

Corollary 3.4.3 IfV and W are vector spaces over F with dimV = dim W, then V is isomorphic
to W. ]

It follows that we can study all vector spaces by studying the spaces F™.
We conclude this lecture with a discussion on changing basis. Suppose that V is a vector space over
F and B and B’ are two bases for V. We want to find out how the two bases are related to one

another. In particular, we want to be able to find the coordinates of a vector v with respect to B’ if
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we know the coordinates with respect to B. To keep the notations as simple as possible, we will refer
to B as the “old” basis and B’ as the “new” basis. We begin by noting that since the new basis spans
V, every vector v; € B can be written as a linear combination of the new basis B’ = (v],...,v},).

"y En

Therefore we can find an n X n matrix of scalars P such that
B'P=EB.

The matrix P is called the change of basis matrix. Note that the j** column of P is the coordinate

vector of v; € B with respect to the new basis B’.
Lemma 3.4.4 The change of basis matriz P is invertible.

Proof. If we interchange the roles of B and B’, we have an n x n matrix P’ that satisfies BP' = B’

and hence
B=BP=(BP)P=B(PP).

This last expression gives each v; as a linear combination of the vectors in B, and the entries in the
matrix P’ P are the coefficients. But B is a basis so that we can only write v; = v; so that the matrix
P'P is the identity matrix so that P is invertible as claimed. [
Now, if v € V has the coordinate vector X with respect to the basis B, then v = BX. It follows
immediately that v = B’ PX so that PX is the coordinate vector of v with respect to B’. This is why
P is called the change of basis matrix: multiplication on the left by P changes from the old basis to
the new basis. We remark again that the columns of P are the coordinates of the old basis vectors
with respect to the new basis. Summarizing, we have an invertible matrix P that simultaneously

satisfies the equations
B=B'P and PX =X

where X and X’ denote the coordinates of a vector v € V with respect to the bases B and B’
respectively. In particular, if V' = F™ and B is the standard basis, then we have I, = [B']P so that
pP=[B]"L

In the above discussion, we could have just as well started with a single basis B for V and an
invertible matrix P € GL,(F) to form a new basis B/ = BP~!. This equation shows immediately
that B’ is a basis for V since it shows that each v; € B is in the span of B’ and that B’ has exactly
n = dim V elements. All of this fits together to prove the following corollary whose precise proof we

leave as an exercise for the reader.
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Corollary 3.4.5 If B is a basis for a finite dimensional vector space V', then any other basis has
the form B' = BP~! where P € GL,(F) and therefore the number of distinct bases for V is the

order of the group GL,,(F). [ ]

We conclude this lecture with an application of the previous result. Namely, we will compute the

order of the group GL,,(F,) where F,, denote the field of p elements.

Proposition 3.4.6 IfF, is the field of p elements, then the order of the group GL,(F,) is

Proof. By the previous corollary, it suffices to count the number of bases for the vector space I} .
Since the zero vector can never belong to a basis, we have p™ — 1 choices for the first basis vector
v1. Having made this choice, we can pick vy to be any vector that is not a scalar multiple of vy, and
there are exactly p such multiples. Therefore we have p™ — p choices for v,. Similarly, we can pick v
so that it is not a linear combination of v; and vy. There are exactly p? such linear combinations so
that we have p™ — p? choices for v3. Continuing we see that we will have p™ —p™~! choices for v,, and
since all of these choices are independent of one another, the result follows from the multiplication

principle. ]
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Chapter 4

Linear Transformations

4.1 Lecture 20: The rank-nullity theorem

We have already seen that an isomorphism between two vector spaces is an isomorphism of the un-
derlying abelian groups that respects scalar multiplication. In this lecture we will begin to investigate

such mappings that are not necessarily bijective. Here is the main definition.

Definition 4.1.1 (Linear transformation) If V and W are vector spaces over a field F, then a

linear transformation from V to W is a group homomorphism T : V — W that satisfies
T(av) = oT(v)
forallveV and all o € F.

It would not be inappropriate to call linear transformations simply “vector space homomorphisms”
since they are precisely the functions between two vector spaces that preserve the vector space
structure. As we will see later in our course, there are many structures that algebraists can impose
on a set (e.g. groups, vector spaces, rings, modules, algebras ...), and we will always refer to
the functions that preserve these structures as homomorphisms. For vector spaces however, it is
traditional to call such maps linear transformations and we will follow this tradition. Every linear
transformation 7' : V — W is, at the very least, a group homomorphism so that we can speak of
the the two subgroups ker 7" and im 7T". The following proposition states that these subgroups are in

fact subspaces.
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Proposition 4.1.2 If T : V — W is a linear transformation, then ker T is a subspace of V and

imT is a subspace of W.

Proof. Exercise. ]
Here are some examples of linear transformations. As we will soon see, the first example is really

the only one!

Example 4.1.3 1. Let A be an m X n matrix with entries in F'. Then A defines a linear trans-

formation Ty : F™ — F™ by
Ta(X)=AX.

The linear transformation properties follow directly from the familiar properties of matrix
multiplication. We will call the linear transformation induced by a matrix A “left multiplication

by A”.

2. Let P, denote the vector space of polynomials over C with degree less than or equal to n. The
map % : P, — P, _; defined by
don_d
dx
is a linear transformation. Indeed, the linearity follows immediately from two familiar proper-

ties of the derivative.

3. If V = C[0, 1] is the vector space of continuous real valued functions on the unit interval, the

map T : V — R defined by

T(f) = f(1/2)
is a linear transformation.

Let us expand on the first example slightly. If A is an m X n matrix with entries in F', then the
kernel of the linear transformation T4 : F™ — F™ is the set of all X € F™ such that AX = 0.
In elementary linear algebra courses, this kernel is usually referred to as the solution space of the
homogeneous system of equations AX = 0. Of course it is a subspace of F™. If B € F™ is a non-zero
vector, the system of equations AX = B has a solution if and only if B € imT4. If X, is a solution

to AX = B, the reader can verify that every element of the coset X, + ker T4 is also a solution to
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AX = B. This is simply the familiar fact that if you add a solution to the homogeneous system
AX = 0 to any solution of AX = B, you get another solution of AX = B. Therefore we see that
the set of all solutions to AX = B is simply the coset of ker T4 containing any particular solution.
Our final goal of this lecture is to investigate the relationship between the dimensions of the subspaces
kerT and im T for a given linear map 7 : V' — W. The reader should note carefully how the facts
about bases and linear independence are used in the proof; the methods are more than typical.
Before we state the result, we remark that the dimension of im 7" is usually referred to as the rank

of T and the dimension of ker T" is usually called the nullity of T'.

Theorem 4.1.4 (Rank-Nullity Theorem) Let V and W be vector spaces over a field F with V

finite dimensional. If T : V — W is a linear transformation, then
dimV = dimkerT + dimim 7.

Proof. Let dimV = n and choose a basis (v1,...,v) for ker T. We can extend this set to a basis
B=(v,...,Vk,U1,...,u,_g) for V. We need to show that dimim7T = n — k. To do this, it suffices
to exhibit a basis for im 7" with n — k vectors in it. Let us define w; = T'(u;) for j = 1,2,...,n — k.
Clearly each w; € imT. We claim that the set (w1, ..., wn_k) is a basis for imT". If w € im T, then
w = T(v) for some v € V by definition. Since B is a basis for V', we can find scalars o; and 3; such

that
U=+ ok + Brun + oo+ BrokUnk

and since T'(v;) =0 for all s = 1,...,k we have

w=TwW)=0+--+0+5T(v1) ++Bn T (tn&)

=pfrwr + -+ + BnkWn—k
so that the w; span imT. Now, if
Prwy + -+ + BnkWn—k =0,

then we note that the element

v=7PF0ur+ -+ BrkUnr €V
belongs to the kernel of T' (why?). Therefore we can find scalars a; such that

Biuy + -+ Bn_klUn_k = @1v1 + -+ - + QU
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or
—0vy — o — agVk + frun + -+ BoktUnk = 0.

But B is a basis for V' so that we must have a; = 0 and §; = 0 for all ¢ and j so that (w1,...,wn—k)

is linearly independent and the proof is complete. [

We conclude this lecture with a remark on the similarity of the result in the Rank-Nullity Theorem
and the counting formula for groups. Namely, we recall if ¢ : G — H is a homomorphism between

two finite groups, then

|G| = |ker p|| im @]

4.2 Lecture 21: The matrix of a linear transformation

The goal of the current lecture is to show that the example of left multiplication by a matrix actually
describes all linear transformations on finite dimensional vector spaces once you choose bases for the
spaces. We will begin with the spaces F™.

Suppose that T': F™ — F™ is a linear map and consider the images of the standard basis vectors
T(ej) € F™. For each j, we can find scalars a;; € F such that

T(e;) = arjer + -+ Gmj€m.-

Consequently, we can define an m x n matrix A = (a;;) whose j*® column is the coordinate vector

of T(ej). Now, if X € F™ is any vector and we write X = ejx; + --- + enT,, then we have

a11 A1n

so that T'=T}y.

Example 4.2.1 If T : R? — R? satisfies T'(e1) = (1,2,3)T and T(ez) = (=1,0,4)7, then T is given

by left multiplication by the matrix
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IfT : V — W is a linear map on arbitrary vector spaces, then we can still describe T as multiplication
by a matrix using the isomorphism % : V' — F™. Recall that this isomorphism depends on choosing
a basis for the space V, so that we expect the matrix to also depend on the choice of basis. The
reader may wish to take a moment to review the notation established in Lecture 19.

Let V and W be finite dimensional vector spaces over F and let B = (v1,...,v,) and C =
(w1,...,wn) be bases for V and W respectively. If T : V — W is a linear map, we define the
hypervector T(B) by

T(B) = (T(v1),.-.,T(vp))-

Since C is a basis for W, there is an m X n matrix A such that T'(B) = CA. Recall that this is just

notation for the existence of scalars a;; € F such that
T(’Uj) = wia15 + wa2az; + - + Wy Qmj-

Therefore A is the matrix whose ;! column is the coordinate vector of T'(v;) with respect to the
C basis. This matrix is called the matrix of the linear transformation with respect to the
bases B and C. Different choices of bases will, in general, lead to different matrices.

Our next goal is to show that left multiplication by the matrix of a linear map acts like the linear
map provided we write all coordinates in the appropriate basis. To begin, let v € V and write v in

terms of the B basis:
v=BX =viz1 + -+ + vpTyp.
If we apply T to both sides of this equation, we have
T(v) =T(v1)x1+ -+ T(vp)zn, =T(B)X =CAX.

Therefore we see that Y = AX is the coordinate vector of T'(v) with respect to the C basis. In

summary then, given T : V — W, B and C, we can construct an m X n matrix A over F' such that
T(B)=CA and AX=Y

where v = BX and T'(v) =CY.
We conclude this lecture by determining what happens to the matrix A when we change basis.
To this end, suppose that B’ = (v},...,v},) and ¢’ = (w},...,w},) are also bases for V and W

respectively. Then there are invertible matrices P € GL,(F') and @ € GL,,(F) that satisfy

PX = X' and QY =Y’
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where X and X’ denote the coordinate vectors of a vector v € V with respect to the bases B and
B’ respectively and similarly for Y and Y’. Let A’ denote the matrix of T : V — W with respect to
the new bases B’ and C’ so that A’X’ =Y’. It follows that

QAP 'X' = QAX =QY =Y’

and hence A’ = QAP 1. As before, we can take P and @ as arbitrary invertible matrices (of the

appropriate sizes). Specifically, we have the following theorem.

Theorem 4.2.2 Let A be the matriz of a linear transformation T : V. — W with respect to the

bases B and C. Then the matrices A’ that represent T with respect to other bases are of the form
A= QAP !
where @ € GL,,,(F) and P € GL,(F) are arbitrary invertible matrices.

Proof. Our comments above show that every other matrix A’ that represents T has this form.
Conversely, given A, Q and P, the matrix QAP ! represents T with respect to the bases B’ and C’
obtained from B and C by applying P and () respectively. ]

4.3 Lecture 22: Eigenvectors

Our goal in the current lecture is to apply what we know about linear transformations and the
matrices that represent them to the special case V = W. A linear map T : V — V from a
vector space to itself is always called a linear operator. Moreover, since the domain and codomain
coincide, we will always use a single basis B in V' and hence we will refer to the matrix of the operator
T :V — V with respect to B. Since there is only one basis involved, there is only one invertible
matrix P € GL,(F) in the change of basis formula. The details of the proof of the following theorem
are left to the reader.

Theorem 4.3.1 Let A be the matriz of a linear operator T : V. — V with respect to the basis B.

Then the matrices A’ that represent T with respect to other bases are of the form
A" =PAP!

where P € GLy(F) is an arbitrary invertible matriz. |
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In general, we will say that two n x n matrices A and B are similar if B = PAP~! for some
P € GL,(F). One of the goals of the current lecture is as follows: given a linear operator T : V — V,
is there a basis for with the matrix of the transformation is particularly simple? In the language of
matrices, given a square matrix A over F, can we find an invertible matrix P such that PAP~! is
particularly simple? To explain what we mean by “particularly simple”, we will need the following

definition.

Definition 4.3.2 (Invariant subspace) Let V be a vector space over F and T : V — V be a

linear operator. A subspace W <V is invariant under T if
T(W) C W.

In other words, if W is invariant under T, then T'(w) € W for all w € W. Notice that in this case
T induces a linear map Ty : W — W called the restriction of 7" to W. If W is invariant under
T and (w1, ..., w) is a basis for W, then if we extend this to a basis B for V, the matrix of T' with

respect to B has the block form

A B
0 C

where A is a k x k matrix. In fact, A is the matrix of the restriction of T' to W with respect to the

basis (wi,...,w;). Among the most important invariant subspaces are the 1-dimensional ones.

Definition 4.3.3 (Eigenvector) If T : V — V is a linear operator on a vector space V, then a

non-zero vector v € V is called an eigenvector for T if
T(v) = A

for some scalar N € F. In this case the scalar A is called an eigenvalue associated to the

eigenvector v.

We remark here that the scalar 0 € F' may be an eigenvalue, but the zero vector 0 € V is never
an eigenvector. If v is an eigenvector for an operator 7' : V — V, then the 1-dimensional subspace
W = Fv = {av : a € F} is invariant under T. Conversely, if Fv is T-invariant, then v is an
eigenvector. Therefore the eigenvectors for 7' are precisely the vectors that form bases for the 1-
dimensional T-invariant subspaces. Recall that invariant subspaces of dimension k give k x k blocks

in the matrix of the operator T'. Therefore eigenvectors will give 1 x 1 blocks in the matrix of T
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So far we have defined the notion of eigenvector and eigenvalue for linear operators 7: V — V. It
is easy to guess how we might make corresponding definitions for n X n matrices over F' since each
such matrix gives rise to an operator F™ — F™. Specifically, we will call a non-zero column vector
X € F™ an eigenvector for the matrix A if AX = AX for some A € F. As before A is called an
eigenvalue associated with X. A natural question at this point is: what is the relationship between

the eigenvectors of an operator T and the eigenvectors of a matrix that represents 7' in some basis.

Proposition 4.3.4 Let T : V — V be a linear operator and let A be the matriz of T' with respect to
a basis B. Denote the coordinate of a vector v € V' with respect to B by X. Then v is an eigenvector

for T if and only if X is an eigenvector for A.

Proof. We know that the coordinate vector of T'(v) is AX and of course the coordinate vector of

Av is AX for all A € F. Therefore T'(v) = v iff. AX = AX. |
Corollary 4.3.5 Similar matrices have the same eigenvalues.

Proof. If A is similar to B, then A and B represent the same linear operator 7" on F'™ with respect
to two different bases. If A € F' is an eigenvalue for A, then there is a non-zero vector X such that
AX = AX. The previous proposition implies that T'(v) = Av where X is the coordinate vector
for v € V. If we let Y denote the coordinate vector of v with respect to the other basis, another
application of the proposition shows that BY = AY so that )\ is an eigenvalue for B as well. Of

course the above argument is reversible and the proof is complete. ]

Definition 4.3.6 (Diagonalizable) A n x n matriz A over F is diagonalizable if it is similar

to a diagonal matriz. That is, A is diagonalizable iff. PAP~! = D for some diagonal matriz D.
The following proposition is left as an exercise.

Proposition 4.3.7 A n X n matrix A over F is diagonalizable if and only if F™ has a basis of

eigenvectors for A. ]

4.4 Lecture 23: The characteristic polynomial

In this lecture, our goal is to be able to find all eigenvectors for a given linear operator 7: V — V.

That is, given T : V — V, we want to find all non-zero vectors v € V such that T(v) = Av for
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some scalar A € F. Our method will be to first find all possible eigenvalues of T, for once we know
that A € F is a eigenvalue for T, then finding associated eigenvectors is equivalent to solving a
linear system of equations T'(v) = Av. Recall from your homework problem 4.2.9 that the set of all
linear operators on V form a vector space over F' under pointwise addition and scalar multiplication.
Therefore if we let 1y : V' — V denote the identity transformation on V, for each A € F, the map
T —Aly : V — V is a linear operator on V. The reader should stop and write a careful proof of the

following proposition.

Proposition 4.4.1 If T : V — V is a linear operator on a F-vector space V, then v € V is an

eigenvector for T if and only if v is a non-zero element of ker(T — Aly) for some A € F. [

We have made a small step toward our goal. Namely, we have replaced the problem of finding the
eigenvectors of an operator 7" with finding the non-zero elements of the kernel of another operator:
T — Aly. Our next step will be to replace the operators T' and T'— A1y with matrices that represent

them in some basis. We will need the following lemma.

Lemma 4.4.2 If T : V — V is a linear operator on a finite dimensional F-vector space V', then

the following are equivalent:
1. ker T # 0.
2. imT#V
3. If A is the matriz of T with respect to any basis, then det A = 0.
4. 0 is an eigenvalue for T.

Proof. (1 = 2) If ker T # 0, then dimp(ker T') # 0 so that the rank-nullity theorem implies that
dimp(imT) # dimp V. Therefore imT # V.

(2= 3) IfimT # V, then T is not onto and hence T is not invertible. Therefore if A is any matrix
that represents T, A is not invertible and hence det A = 0.

(3 = 4) Suppose that A is the matrix of T with respect to a basis B and that det A # 0. Then the
homogeneous system of equations AX = 0 has a non-trivial solution X € F™ and hence v =BX € V
is a non-zero element of ker . Therefore T(v) = 0-v = 0 and hence 0 is an eigenvalue for the
eigenvector v of T.

(4 = 1) If 0 is an eigenvalue for T, then by definition there is a non-zero vector v € V such that

T(v) =0-v =0 so that ker T # 0. |
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Definition 4.4.3 A linear operator T : V — V is called singular if it satisfies one (and hence all)

of the conditions in the previous lemma.

In this terminology, a scalar A € F' is an eigenvalue for the operator T if and only if the operator
T — Aly is singular. Furthermore, if we note that the matrix of the identity map 1y : V — V is the

n X n identity matrix I = I,, for any basis B of V', we have the following corollary.

Corollary 4.4.4 If T :V — V is a linear operator on a finite dimensional F'-vector space V, then
X € F is an eigenvalue for T if and only if det(A — A\I) = 0 where A is the matriz of T in an

arbitrary basis for V.

Proof. It follows from homework problem 4.2.9 that the matrix of 7' — Aly is A — AI. Therefore
A € F is an eigenvalue for T iff. T — Aly is singular iff. det(4 — A\I) = 0. |

We remark here that if A is an n X n matrix over F', then
det(A— M) =0 <= det(A\]— A) =0.

Definition 4.4.5 (Characteristic polynomial) If T : V — V is a linear operator on a finite

dimensional F-vector space V, the characteristic polynomial of T is
p(A) = det(M — A)
where A is the matriz of T with respect to some basis.

We need to settle something right away. Namely, we must show that the characteristic polynomial

p(A) does not depend on the choice of basis.
Proposition 4.4.6 The characteristic polynomial of T does not depend on the choice of basis.

Proof. Suppose that A and A’ represent T with respect to the bases B and B’ respectively. Then
there exists P € GL,,(F) such that A’ = PAP~!. We then compute

det(AI — A") = det(A\ — PAP™') = det(P(M\ — A)P™!) = det(\ — A).

If we roll all of this information up into one result, we have shown the following.

Corollary 4.4.7 If T : V — V is a linear operator on a finite dimensional F-vector space V, then
the eigenvalues of T are the roots of the characteristic polynomial p(X). In particular, the eigenvalues

of an upper or lower triangular matriz A are its diagonal entries.
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Proof. The fist statement follows immediately from the above remarks. The reader should organize
a careful proof. As for the second statement, we simply notice that AI — A is upper or lower triangular

with diagonal entries A — a;; so that

p(A)=A—a11) - (A—ann)-

We end this lecture with a useful proposition.

Proposition 4.4.8 Let T : V — V be a linear operator on a finite dimensional F-vector space V.
1. If dimp V =mn, then T has at most n eigenvalues.

2. If F=C and V # 0, then T has at least one eigenvalue.

Proof. Although we have not proved it in this course, a polynomial of degree n over any field
can have at most n distinct roots. This shows (1). As for (2), a little fact called the Fundamental
Theorem of Algebra states that every non-constant polynomial over C has a root. If V' # 0, then
dim¢ V' > 1 so that the degree of the characteristic polynomial has degree at least one and hence

has a root in C. u

4.5 Lecture 24: Diagonalization

Our goal in this lecture is twofold: first we want to explain what we mean by particularly nice
matrices and then we want to show that linear operators over complex vector spaces admit such
matrix representations. For purposes of computation, we will say that a matrix is particularly nice

if it is triangular. We begin with the following theorem.

Theorem 4.5.1 Let T : V — V be a linear operator on a finite dimensional complex vector space

V. Then there ezist a basis B of V' such that the matriz of T is upper-triangular with respect to B.

Proof. We proceed by induction on n = dim¢ V. If n = 1, then every 1 x 1 matrix A is triangular
so that we may take any basis (non-zero vector) for V. Suppose then that n > 1 and recall from
the previous lecture that 7" has at least one eigenvalue A\; € C, and hence at least one eigenvector

v1 € V. We can extend this eigenvector to a basis B’ = (v1, vy, ...,v),) for V. If A’ is the matrix of
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T with respect to B’, then it follows that A’ has the form

)\1*
0 B

A=

where B is an (n — 1) X (n — 1) matrix. If A is the matrix of T in an arbitrary basis for V, then we
have shown that there is an element P € GL,(C) such that A’ = PAP~!. By induction, we may
assume there exists an element Q € GL,,_;(C) such that QBQ ! is triangular. If Q; is the n x n

matrix given in block form by

0 Q

then it follows that

(Q1P)A(Q1P)™' = Q1(PAPHQT" = Q14'Q"
has the form

A1 *

0 QBQ!
which is triangular. ™
We remark here that the only property of the complex field C that is used in the above result is that
every non-constant polynomial over C has a root in C. If F is an arbitrary field with the property
that every non-constant polynomial over F' has a root in F', then F is called algebraically closed.
Note that the fields R and Q are not algebraically closed. The reader is encouraged to modify the

above proof to show the following theorem.

Theorem 4.5.2 Let V be a finite dimensional vector space over an algebraically closed field F', and
Let T : V — V be a linear operator on V. Then there exist a basis B of V such that the matriz of

T is upper-triangular with respect to B. [

Now, the best triangular matrices are the diagonal ones. There are many reasons for this. Perhaps
one of the most important is that if D is a diagonal matrix with diagonal entries d;;, then for any
k € N, DF is diagonal with diagonal entries d¥.. We therefore turn to the question: which linear
operators over F-vector spaces admit a basis in which the matrix of the operator is diagonal? In

some sense, we answered this question in Lecture 22. Namely we saw that an operator on V is
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diagonalizable if and only if there is a basis of eigenvectors. Our goal here then is to discover a

sufficient condition for the existence of such a basis. We begin with a lemma.

Lemma 4.5.3 Let vy,...,v, be eigenvectors for a linear operator T : V — V with distinct eigen-

values c1,...,c,. Then the (ordered) set (v1,...,v,) is linearly independent.

Proof. We induct on r, the case r = 1 being trivial (a single non-zero vector is always an independent

set). Suppose that
0=ajvy +---+avy
so that applying T gives
0=aiciv1 + --- + arcrv,.
If we multiply the first relation by ¢, and subtract the second, we have

0=ai(cr —c1)vi+ -+ ar—1(cr — Cr_1)vp_1.

By induction, a;(c, — ¢;) = 0 for all j < r. But ¢; # ¢, if j < r so that we must have a; = ---
ar_1 = 0. But then the original relation reduces to a,v, = 0 and hence a,, = 0 since v, # 0. [ ]

The next theorem is the sufficient condition we are after.

Theorem 4.5.4 Let T be a linear operator on a vector space V' of dimnesion n over a field F. If
the characteristic polynomial p(\) for T has n distinct roots in F, then V has a basis B for which

the matriz of T is diagonal.

Proof. If p(\) has n distinct roots, then the above lemma immediately implies that the n corre-
sponding eigenvectors are linearly independent and hence form a basis since dimp V = n. But we
have already noted that the matrix of T" with respect to such a basis is diagonal. ]
We end this lecture with a remark about other nice matrices. If the characteristic polynomial p(\)
has multiple roots, then T will not be diagonalizable in general. The study of this case leads one
to something called the Jordan canonical form of an operator. We will return to this problem
in MAT 150C as an application of the Fundamental Theorem of finitely generated modules over a

principal ideal domain.
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