Elementary Matrices

In thus special handout of material not contained in the text, we introduce the concept of
clementary matrix. Elementary matrices are useful in several ways that will be shown in this
handout. One important use that we will examine first is that elementary matrices can be used to
carry out elementary row operations. This means that if you want to interchange two rows, or
multiply a row by a constant and add it to another row, or multiply some row by a non-zero
constant, it can be done using an elementary matrix. The definition given next shows that
clementary matrices can be created by applying elementary row operations to the tdentity matrix.

Definition: An nxn matrix E is an elementary matrix if it can be obtained by performing a single

clementary row operation on the dentity matrix [,

Some examples of clementary matrices for n = 3 and for each of the elementary row operations

are
00 |
By (l) (l) 8J , which 1s obtained by iterchanging the first row and third rows of I3,
-0
by :; (l) (I) J which 15 obtained by multiplying the first row ot Iy by -1, and
L 0o
Ly = 5 (l) (l) which 1s obtained by multiplying the first row of I3 by -2 and adding it to

the second row of I3. The subscripts on E have no particular meaning but are just used to

distinguish one clementary matrix from the next.

An elementary row operation can be cartied out by its corresponding elementary matrix through

matux multiplication. For example, suppose we wish to interchange the first and third rows of



6 1 -1

the matrix A = 2! f? (% - This can be done by multiplying A on the left by the elementary

matrix £y, given above, to yield

-1 3 0
E!A - 2 -6 2
01 -1

Suppose we then wish to perform the elementary row operation of multiplying the first row by

-1, we can do this by multiplying by E- which then gives
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We can then perform on this result the elementary row operation of multiplying the first row by

-2 and adding it (o the second row using E; to obtain
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If our goal i¢ to obtain rref for A, then we would continue with the following elementary
matrices to

100
switch rows 2 and 3 we do this to I3 toobtain E4 = 8 (l) 6 and applying this to the
previous result we get
130
Eq B3 By By A = 01 -1
4 I3 By By 00 2



then to multiply row 2 by 3 and add it to row 1 we do this to I3 to obtain Es =

SO -
S —w
—_—0 0

and applying this to the previous result we obtain

1 0 -3
ESEqE3EyEjA = | 01 -1
543 2 Ly 00
10 0
then to multiply row 3 by 1/2 we use the elementary matrix E¢ = 0 (l) ](/)2 to get
I 0 -3
EgEg g By By By A 01 -1
I 03
then to multiply row 3 by 3 and add it to row 1 we use By = 8 (l) (l) to obtain

100
E7EqESE4B3 By Ej A = 01 -1
U 00 1
100
and finally, to add row 3 to row 2 we use Eg = 8 (l) : to get
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Note that the last equation is EgE7EqEsE4E3Ey Ey A = 3. Thus the product

Eg E7 E¢ Eg E4 B3 E, E| must be the inverse of A and this gives us another way of computing
the mverse of A. Note that carrying out the product

332 2 ,
Eg E7 Bg Es g B3 by B = (Hg: = A

Elementary matrices have another umportant property given in the next theorem.

Theorem 1. Every clementary matrix has an inverse, which is also an elementary matrix.
Proof: We won't give a formal proof but will suggest two reasons why it is true. First, since
every elementary row operation can be reversed, one would expect that this can be represented
by an elementary row operation which is an elementary matrix. Second, it is easy to construct
the inverse of an elementary matrix. Here are the three cases:

. If E interchanges two rows, then E is its own inverse. (Why?)

2. IFE multiplies a row by a non-zero constant ¢, then its inverse is the elementary matrix that

multiplies a row by 1/c.

3. If E multiplies row 1 by ¢ and adds it to row J, the its inverse is the elementary matrix that
multiplies: row i by -¢ and adds it todrdwj.

For the elementary matrices used in the example above here are their inverses which are also
elementary matrices

| 01 L] roo | 100
E,y =1 010 i E,) =} 0 1'6 E) =1 210
1 100 (2) 001 (*3) 001
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¥ 10 3 | 100
Ey) 01 0 i Fo) = o1 -1
7 00 1 | s 00 1

Theorem 2. (a). Every mxn matrix A can be decomposed as a product of elementary matrices
and a matrix R that is rref, that 1S,

E.R (n

where [ i are elementary matrics and R is rref

(b). If A isnxn and has an inverse, then R is the identity matrix and A is
decomposable into the product of elementary matrices, that is,

A = [Tl ES~[ E\ v

Prootof (a)  Smce every matrix A can be put nto rref by row operations and since every row
operation can be represented by an elementary matrix we have, where R is rref,

E.

s EjA= R )

By Theorem | each I; has an inverse that is an elementary matrix. If we let £ j denote its

nverse and multiply equation (3) on both sides by [ ;- E 1 E s We obtain equation (1).

Proofof(b). 1f A has an inverse, then R is the identity in equation (1) and so we obtain equation

(2) Faod of proof,

-1 Lo
From the example before Theorem 2, we have that (Ey) (Eg) ~ A.






